1,994 research outputs found

    Magnetic fields and radiative feedback in the star formation process

    Full text link
    Star formation is a complex process involving the interplay of many physical effects, including gravity, turbulent gas dynamics, magnetic fields and radiation. Our understanding of the process has improved substantially in recent years, primarily as a result of our increased ability to incorporate the relevant physics in numerical calculations of the star formation process. In this contribution we present an overview of our recent studies of star cluster formation in turbulent, magnetised clouds using self-gravitating radiation-magnetohydrodynamics calculations (Price and Bate 2008, 2009). Our incorporation of magnetic fields and radiative transfer into the Smoothed Particle Hydrodynamics method are discussed. We highlight how magnetic fields and radiative heating of the gas around newborn stars can solve several of the key puzzles in star formation, including an explanation for why star formation is such a slow and inefficient process. However, the presence of magnetic fields at observed strengths in collapsing protostellar cores also leads to problems on smaller scales, including a difficulty in forming protostellar discs and binary stars (Price and Bate 2007, Hennebelle and Teyssier 2008), which suggests that our understanding of the role of magnetic fields in star formation is not yet complete.Comment: 14 pages aip conf. format, 5 figures, submitted to AIP conf proc. of "Plasmas in the Laboratory and in the Universe: Interactions, Patterns and Turbulence", Como, Italy 1st-4th Dec 2009, eds. Bertin et al. Relevant movies at http://users.monash.edu.au/~dprice/mclusterRT/index.html#movie

    Smoothed particle magnetohydrodynamic simulations of protostellar outflows with misaligned magnetic field and rotation axes

    Get PDF
    We have developed a modified form of the equations of smoothed particle magnetohydrodynamics which are stable in the presence of very steep density gradients. Using this formalism, we have performed simulations of the collapse of magnetised molecular cloud cores to form protostars and drive outflows. Our stable formalism allows for smaller sink particles (< 5 AU) than used previously and the investigation of the effect of varying the angle, {\theta}, between the initial field axis and the rotation axis. The nature of the outflows depends strongly on this angle: jet-like outflows are not produced at all when {\theta} > 30{\deg}, and a collimated outflow is not sustained when {\theta} > 10{\deg}. No substantial outflows of any kind are produced when {\theta} > 60{\deg}. This may place constraints on the geometry of the magnetic field in molecular clouds where bipolar outflows are seen.Comment: Accepted for publication in MNRAS, 13 pages, 14 figures. Animations can be found at http://www.astro.ex.ac.uk/people/blewis/research/outflows_misaligned_fields.htm

    Constrained hyperbolic divergence cleaning in smoothed particle magnetohydrodynamics with variable cleaning speeds

    Get PDF
    We present an updated constrained hyperbolic/parabolic divergence cleaning algorithm for smoothed particle magnetohydrodynamics (SPMHD) that remains conservative with wave cleaning speeds which vary in space and time. This is accomplished by evolving the quantity ψ/ch\psi / c_h instead of ψ\psi. Doing so allows each particle to carry an individual wave cleaning speed, chc_h, that can evolve in time without needing an explicit prescription for how it should evolve, preventing circumstances which we demonstrate could lead to runaway energy growth related to variable wave cleaning speeds. This modification requires only a minor adjustment to the cleaning equations and is trivial to adopt in existing codes. Finally, we demonstrate that our constrained hyperbolic/parabolic divergence cleaning algorithm, run for a large number of iterations, can reduce the divergence of the field to an arbitrarily small value, achieving ∇⋅B=0\nabla \cdot B=0 to machine precision.Comment: 23 pages, 16 figures, accepted for publication in Journal of Computational Physic

    Extending the Latent Multinomial Model with Complex Error Processes and Dynamic Markov Bases

    Get PDF
    The latent multinomial model (LMM) model of Link et al. (2010) provided a general framework for modelling mark-recapture data with potential errors in identification. Key to this approach was a Markov chain Monte Carlo (MCMC) scheme for sampling possible configurations of the counts true capture histories that could have generated the observed data. This MCMC algorithm used vectors from a basis for the kernel of the linear map between the true and observed counts to move between the possible configurations of the true data. Schofield and Bonner (2015) showed that a strict basis was sufficient for some models of the errors, including the model presented by Link et al. (2010), but a larger set called a Markov basis may be required for more complex models. We address two further challenges with this approach: 1) that models with more complex error mechanisms do not fit easily within the LMM and 2) that the Markov basis can be difficult or impossible to compute for even moderate sized studies. We address these issues by extending the LMM to separately model the capture/demographic process and the error process and by developing a new MCMC sampling scheme using dynamic Markov bases. Our work is motivated by a study of Queen snakes (Regina septemvittata) in Kentucky, USA, and we use simulation to compare the use of PIT tags, with perfect identification, and brands, which are prone to error, when estimating survival rates

    Investigating prescriptions for artificial resistivity in smoothed particle magnetohydrodynamics

    Full text link
    In numerical simulations, artificial terms are applied to the evolution equations for stability. To prove their validity, these terms are thoroughly tested in test problems where the results are well known. However, they are seldom tested in production-quality simulations at high resolution where they interact with a plethora of physical and numerical algorithms. We test three artificial resistivities in both the Orszag-Tang vortex and in a star formation simulation. From the Orszag-Tang vortex, the Price et. al. (2017) artificial resistivity is the least dissipative thus captures the density and magnetic features; in the star formation algorithm, each artificial resistivity algorithm interacts differently with the sink particle to produce various results, including gas bubbles, dense discs, and migrating sink particles. The star formation simulations suggest that it is important to rely upon physical resistivity rather than artificial resistivity for convergence.Comment: 8 pages, 7 figures. Proceedings of the "12th international SPHERIC workshop", Ourense, Spain, 13-15 June 201

    The impact of magnetic fields on single and binary star formation

    Get PDF
    We have performed magnetohydrodynamic (MHD) simulations of the collapse and fragmentation of molecular cloud cores using a new algorithm for MHD within the smoothed particle hydrodynamics (SPH) method, that enforces the zero magnetic divergence constraint. We find that the support provided by magnetic fields over thermal pressure alone has several important effects on fragmentation and the formation of binary and multiple systems, and on the properties of massive circumstellar discs. The extra support suppresses the tendency of molecular cloud cores to fragment due to either initial density perturbations or disc fragmentation. Furthermore, unlike most previous studies, we find that magnetic pressure plays the dominant role in inhibiting fragmentation rather than magnetic tension or magnetic braking. In particular, we find that if the magnetic field is aligned with the rotation axis of the molecular cloud core, the effects of the magnetic field on fragmentation and disc structure are almost entirely due to magnetic pressure, while if the rotation axis is initially perpendicular to the magnetic field, magnetic tension plays a greater role and can actually aid fragmentation. Despite these effects, and contrary to several past studies, we find that strongly-perturbed molecular cloud cores are able to fragment to form wide binary systems even in the presence of quite strong magnetic fields. For massive circumstellar discs, we find that slowing of the collapse caused by the magnetic support decreases the mass infall rate on to the disc and, thus, weakens gravitational instabilities in young massive circumstellar discs. This not only reduces the likelihood that they will fragment, but also decreases the importance of spiral density waves in providing angular momentum transport and in promoting planet formation.Comment: 15 pages, 12 figures, accepted for publication in MNRAS. Images degraded to fit size requirements. High res version and pretty movies for this paper can be found at http://www.astro.ex.ac.uk/people/dprice/pubs/magsf/index1.htm

    Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe? (dataset)

    Get PDF
    This is all the data created for Wurster, Price & Bate (2016). This dataset was created using the SPHMD code Phantom and included a precursor to the NICIL library (Wurster 2016) to calculate the non-ideal MHD coefficients. The data and important files have been uploaded; the data files can be read with either Phantom, or with the graphics programme Splash. The filenames represent the original path and the simulation, and have the prefix WPB2016_pdata_. The second component to the filename is 1e6 (models with 1e6 particles in the sphere) or 3e5 (models with 1e6 particles in the sphere) and the third component is the simulation name. Typically, the model name has the form ABC, where A=ii,ni,nim for ideal, non-ideal with Bz, non-ideal with -Bz, respectively; B=o,h,a,oha for ohmic,hall,ambipolar,ohmic+hall+ambipolar, respectively; C=B,Q,C,D,P mu0=10,7.5,5,5,hydro, respectively. Ideal runs do not have a B part to the name.We investigate whether or not the low ionization fractions in molecular cloud cores can solve the ‘magnetic braking catastrophe’, where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non- ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core
    • …
    corecore