761 research outputs found
Geometric shape of invariant manifolds for a class of stochastic partial differential equations
Invariant manifolds play an important role in the study of the qualitative
dynamical behaviors for nonlinear stochastic partial differential equations.
However, the geometric shape of these manifolds is largely unclear. The purpose
of the present paper is to try to describe the geometric shape of invariant
manifolds for a class of stochastic partial differential equations with
multiplicative white noises. The local geometric shape of invariant manifolds
is approximated, which holds with significant likelihood. Furthermore, the
result is compared with that for the corresponding deterministic partial
differential equations
Metallicities of 0.3<z<1.0 Galaxies in the GOODS-North Field
We measure nebular oxygen abundances for 204 emission-line galaxies with
redshifts 0.3<z<1.0 in the Great Observatories Origins Deep Survey North
(GOODS-N) field using spectra from the Team Keck Redshift Survey (TKRS). We
also provide an updated analytic prescription for estimating oxygen abundances
using the traditional strong emission line ratio, R_{23}, based on the
photoionization models of Kewley & Dopita (2003). We include an analytic
formula for very crude metallicity estimates using the [NII]6584/Halpha ratio.
Oxygen abundances for GOODS-N galaxies range from 8.2< 12+log(O/H)< 9.1
corresponding to metallicities between 0.3 and 2.5 times the solar value. This
sample of galaxies exhibits a correlation between rest-frame blue luminosity
and gas-phase metallicity (i.e., an L-Z relation), consistent with L-Z
correlations of previously-studied intermediate-redshift samples. The zero
point of the L-Z relation evolves with redshift in the sense that galaxies of a
given luminosity become more metal poor at higher redshift. Galaxies in
luminosity bins -18.5<M_B<-21.5 exhibit a decrease in average oxygen abundance
by 0.14\pm0.05 dex from z=0 to z=1. This rate of metal enrichment means that
28\pm0.07% of metals in local galaxies have been synthesized since z=1, in
reasonable agreement with the predictions based on published star formation
rate densities which show that ~38% of stars in the universe have formed during
the same interval. (Abridged)Comment: AASTeX, 49 pages, 16 figures, accepted for publication in The
Astrophysical Journa
The UV Continuum of Quasars: Models and SDSS Spectral Slopes
We measure long (2200-4000 ang) and short (1450-2200 ang) wavelength spectral
slopes \alpha (F_\nu proportional to \nu^\alpha) for quasar spectra from the
Sloan Digital Sky Survey. The long and short wavelength slopes are computed
from 3646 and 2706 quasars with redshifts in the z=0.76-1.26 and z=1.67-2.07
ranges, respectively. We calculate mean slopes after binning the data by
monochromatic luminosity at 2200 ang and virial mass estimates based on
measurements of the MgII line width and 3000 ang continuum luminosity. We find
little evidence for mass dependent variations in the mean slopes, but a
significant luminosity dependent trend in the near UV spectral slopes is
observed with larger (bluer) slopes at higher luminosities. The far UV slopes
show no clear variation with luminosity and are generally lower (redder) than
the near UV slopes at comparable luminosities, suggesting a slightly concave
quasar continuum shape. We compare these results with Monte Carlo distributions
of slopes computed from models of thin accretion disks, accounting for
uncertainties in the mass estimates. The model slopes produce mass dependent
trends which are larger than observed, though this conclusion is sensitive to
the assumed uncertainties in the mass estimates. The model slopes are also
generally bluer than observed, and we argue that reddening by dust intrinsic to
the source or host galaxy may account for much of the discrepancy.Comment: To be published in ApJ, 18 pages, 10 figure
Spitzer Observations of the z=2.73 Lensed Lyman Break Galaxy, MS1512-cB58
We present Spitzer infrared (IR) photometry and spectroscopy of the lensed
Lyman break galaxy (LBG), MS1512-cB58 at z=2.73. The large (factor ~30)
magnification allows for the most detailed infrared study of an L*_UV(z=3) LBG
to date. Broadband photometry with IRAC (3-10 micron), IRS (16 micron), and
MIPS (24, 70 & 160 micron) was obtained as well as IRS spectroscopy spanning
5.5-35 microns. A fit of stellar population models to the optical/near-IR/IRAC
photometry gives a young age (~9 Myr), forming stars at ~98 M_sun/yr, with a
total stellar mass of ~10^9 M_sun formed thus far. The existence of an old
stellar population with twice the stellar mass can not be ruled out. IR
spectral energy distribution fits to the 24 and 70 micron photometry, as well
as previously obtained submm/mm, data give an intrinsic IR luminosity L_IR =
1-2 x10^11 L_sun and a star formation rate, SFR ~20-40 M_sun/yr. The UV derived
star formation rate (SFR) is ~3-5 times higher than the SFR determined using
L_IR or L_Halpha because the red UV spectral slope is significantly over
predicting the level of dust extinction. This suggests that the assumed
Calzetti starburst obscuration law may not be valid for young LBGs. We detect
strong line emission from Polycyclic Aromatic Hydrocarbons (PAHs) at 6.2, 7.7,
and 8.6 microns. The line ratios are consistent with ratios observed in both
local and high redshift starbursts. Both the PAH and rest-frame 8 micron
luminosities predict the total L_IR based on previously measured relations in
starbursts. Finally, we do not detect the 3.3 micron PAH feature. This is
marginally inconsistent with some PAH emission models, but still consistent
with PAH ratios measured in many local star-forming galaxies.Comment: Accepted for publication in ApJ. aastex format, 18 pages, 7 figure
Exploratory Study of the X-Ray Properties of Quasars With Intrinsic Narrow Absorption Lines
We have used archival Chandra and XMM-Newton observations of quasars hosting
intrinsic narrow UV absorption lines (intrinsic NALs) to carry out an
exploratory survey of their X-ray properties. Our sample consists of three
intrinsic-NAL quasars and one "mini-BAL" quasar, plus four quasars without
intrinsic absorption lines for comparison. These were drawn in a systematic
manner from an optical/UV-selected sample. The X-ray properties of
intrinsic-NAL quasars are indistinguishable from those of "normal" quasars. We
do not find any excess absorption in quasars with intrinsic NALs, with upper
limits of a few times 10^22 cm^-2. We compare the X-ray and UV properties of
our sample quasars by plotting the equivalent width and blueshift velocity of
the intrinsic NALs and the X-ray spectral index against the "optical-to-X-ray"
slope, alpha-ox. When BAL quasars and other AGNs with intrinsic NALs are
included, the plots suggest that intrinsic-NAL quasars form an extension of the
BAL sequences and tend to bridge the gap between BAL and "normal" quasars.
Observations of larger samples of intrinsic-NAL quasars are needed to verify
these conclusions. We also test two competing scenarios for the location of the
NAL gas in an accretion-disk wind. Our results strongly support a location of
the NAL gas at high latitudes above the disk, closer to the disk axis than the
dense BAL wind. We detect excess X-ray absorption only in Q0014+8118, which
does not host intrinsic NALs. The absorbing medium very likely corresponds to
an intervening system at z=1.1, which also produces strong absorption lines in
the rest-frame UV spectrum of this quasar. In the appendix we discuss the
connection between UV and X-ray attenuation and its effect on alpha-ox.Comment: Accepted by the Astrophysical Journa
Photo-fenton degradation of pentachlorophenol l: competition between additives and photolysis
[EN] In the present work, the photo-Fenton degradation of pentachlorophenol (PCP, 1 mg/L) has been studied under simulated and natural solar irradiation; moreover, the effect on the process efficiency of urban waste-derived soluble bio-based substances (SBO), structurally comparable to humic acids, has been investigated. Experiments showed a crucial role of PCP photolysis, present in the solar pilot plant and hindered by the Pyrex (R) filter present in the solar simulator. Indeed, the SBO screen negatively affects PCP degradation when working under natural solar light, where the photolysis of PCP is relevant. In contrast, in the absence of PCP photolysis, a significant improvement of the photo-Fenton process was observed when added to SBO. Furthermore, SBO were able to extend the application of the photo-Fenton process at circumneutral pH values, due to their ability to complex iron, avoiding its precipitation as oxides or hydroxides. This positive effect has been observed at higher concentration of Fe(II) (4 mg/L), whereas at 1 mg/L, the degradation rates of PCP were comparable in the presence and absence of SBO.This work was realized with the financial support of the academic interchange from the Marie Sklodowska-Curie Research and Innovation Staff Exchange project, funded by the European Commission H2020-MSCA-RISE-2014 within the framework of the research project Mat4treaT (Project number: 645551).Vergura, EP.; GarcĂa-Ballesteros, S.; Vercher PĂ©rez, RF.; Santos-Juanes JordĂĄ, L.; Bianco Prevot, A.; ArquĂ©s Sanz, A. (2019). Photo-Fenton Degradation of Pentachlorophenol: Competition between Additives and Photolysis. Nanomaterials. 9(8):1-8. https://doi.org/10.3390/nano9081157S189
The young age of the extremely metal-deficient blue compact dwarf galaxy SBS 1415+437
We use Multiple Mirror Telescope (MMT) spectrophotometry and Hubble Space
Telescope (HST) Faint Object Spectrograph (FOS) spectra and Wide Field and
Planetary Camera 2 (WFPC2) V and I images to study the properties and
evolutionary status of the nearby (D = 11.4 Mpc) extremely metal-deficient blue
compact dwarf (BCD) galaxy SBS 1415+437=CG 389. The oxygen abundance in the
galaxy is 12+log(O/H)=7.60+/-0.01 or Zsun/21. The helium mass fraction in SBS
1415+437 is Y=0.246+/-0.004 which agrees with the primordial helium abundance
determined by Izotov & Thuan using a much larger sample of BCDs. The
alpha-elements-to-oxygen abundance ratios (Ne/O, S/O, Ar/O) are in very good
agreement with the mean values for other metal-deficient BCDs and are
consistent with the scenario that these elements are made in massive stars. The
Fe/O abundance ratio is ~2 times smaller than the solar ratio. The Si/O ratio
is close to the solar value, implying that silicon is not significantly
depleted into dust grains. The values of the N/O and C/O ratios imply that
intermediate-mass stars have not had time to evolve in SBS 1415+437 and release
their nucleosynthesis products and that both N and C in the BCD have been made
by massive stars only. This sets an upper limit of ~100 Myr on the age of SBS
1415+437. The (V-I) color of the low-surface-brightness component of the galaxy
is blue (<0.4 mag) indicative of a very young underlying stellar population.
The (V-I) - I color-magnitude diagrams of the resolved stellar populations in
different regions of SBS 1415+437 suggest propagating star formation from the
NE side of the galaxy to the SW. All regions in SBS 1415+437 possess very blue
spectral energy distributions (SED). We find that the ages of the stellar
populations in SBS 1415+437 to range from a few Myr to 100 Myr.Comment: 25 pages, 12 PS and 5 JPG figures, to appear in Ap
Monteggia fracture associated with ipsilateral intercondylar distal humeral fracture with posterior interosseous nerve palsy: case report, medico-legal implications, and methodological assessment analysis
BACKGROUND: The Monteggia fracture, defined as a fracture of the proximal third of the ulnar shaft associated with an anterior or posterior dislocation of the proximal radial epiphysis, is a serious injury accounting for 0.7% of all elbow fractures and dislocations in adults. For adult patients, good results can only be obtained through early diagnosis and adequate surgical treatment. Monteggia fracture-dislocations associated with distal humeral fracture are extremely rare injuries in adults and there are few cases described in the literature. Medico-legal implications arising from such conditions have a host of complexities that cannot be discounted.CASE REPORT: This case report revolves around a patient affected by a type I Monteggia fracture-dislocation, according to the Bado classification, associated with an ipsilateral intercondylar distal humeral fracture. To our knowledge, this combination of lesions has never been reported before in adult patients. A positive result was obtained due to early diagnosis, achievement of anatomical reduction, and optimal stabilization with internal fixation which made it possible to achieve early functional recovery.CONCLUSIONS: Monteggia fracture -dislocations associated with ipsilateral intercondylar distal humeral fracture are extremely rare in adults. In the case herein reported, a favorable outcome was obtained due to early diagnosis, achievement of anatomical reduction and management with internal fixation with plate and screws, as well as early functional training. Misdiagnosis makes such lesions risky in terms of potentially delayed treatment, increasing the need for surgical interventions and the possibility of high-risk complications and disabling sequelae, with possible medico -legal implications. In the case of unrecognized injuries under urgent circumstances, the injuries may become chronic, making the treatment more complex. The ultimate outcomes of a misdiagnosed Monteggia lesion can lead to very serious functional and aesthetic damage
Self-Lensing Models of the LMC
All of the proposed explanations for the microlensing events observed towards
the LMC have difficulties. One of these proposed explanations, LMC
self-lensing, which invokes ordinary LMC stars as the long sought-after lenses,
has recently gained considerable popularity as a possible solution to the
microlensing conundrum. In this paper, we carefully examine the set of LMC
self-lensing models. In particular, we review the pertinent observations made
of the LMC, and show how these observations place limits on such self-lensing
models. We find that, given current observational constraints, no purely LMC
disk models are capable of producing optical depths as large as that reported
in the MACHO collaboration 2-year analysis. Besides pure disk, we also consider
alternate geometries, and present a framework which encompasses the previous
studies of LMC self-lensing. We discuss which model parameters need to be
pushed in order for such models to succeed. For example, like previous workers,
we find that an LMC halo geometry may be able to explain the observed events.
However, since all known LMC tracer stellar populations exhibit disk-like
kinematics, such models will have difficulty being reconciled with
observations. For SMC self-lensing, we find predicted optical depths differing
from previous results, but more than sufficient to explain all observed SMC
microlensing. In contrast, for the LMC we find a self-lensing optical depth
contribution between 0.47e-8 and 7.84e-8, with 2.44e-8 being the value for the
set of LMC parameters most consistent with current observations.Comment: 20 pages, Latex, 14 figures, submitted to Ap
Carbon in Spiral Galaxies from Hubble Space Telescope Spectroscopy
We present measurements of the gas-phase C/O abundance ratio in six H II
regions in the spiral galaxies M101 and NGC 2403, based on ultraviolet
spectroscopy using the Faint Object Spectrograph on the Hubble Space Telescope.
The C/O ratios increase systematically with O/H in both galaxies, from log C/O
approximately -0.8 at log O/H = -4.0 to log C/O approx. -0.1 at log O/H = -3.4.
C/N shows no correlation with O/H. The rate of increase of C/O is somewhat
uncertain because of uncertainty as to the appropriate UV reddening law, and
uncertainty in the metallicity dependence on grain depletions. However, the
trend of increasing C/O with O/H is clear, confirming and extending the trend
in C/O indicated previously from observations of irregular galaxies. Our data
indicate that the radial gradients in C/H across spiral galaxies are steeper
than the gradients in O/H. Comparing the data to chemical evolution models for
spiral galaxies shows that models in which the massive star yields do not vary
with metallicity predict radial C/O gradients that are much flatter than the
observed gradients. The most likely hypothesis at present is that stellar winds
in massive stars have an important effect on the yields and thus on the
evolution of carbon and oxygen abundances. C/O and N/O abundance ratios in the
outer disks of spirals determined to date are very similar to those in dwarf
irregular galaxies. This implies that the outer disks of spirals have average
stellar population ages much younger than the inner disks.Comment: 38 pages, 9 postscript figures, uses aaspp4.sty. Accepted for
publication in The Astrophysical Journa
- âŠ