8 research outputs found

    Metabolic and functional imaging of brain tumors

    No full text
    info:eu-repo/semantics/publishe

    Classifier combination for in vivo magnetic resonance spectra of brain tumours

    No full text
    In this paper we present a multi-stage classifier for magnetic resonance spectra of human brain tumours which is being developed as part of a decision support system for radiologists. The basic idea is to decompose a complex classification scheme into a sequence of classifiers, each specialising in different classes of tumours and trying to reproduce part of the WHO classification hierarchy. Each stage uses a particular set of classification features, which are selected using a combination of classical statistical analysis, splitting performance and previous knowledge. Classifiers with different behaviour are combined using a simple voting scheme in order to extract different error patterns: LDA, decision trees and the k-NN classifier. A special label named "unknown¿ is used when the outcomes of the different classifiers disagree. Cascading is also used to incorporate class distances computed using LDA into decision trees. Both cascading and voting are effective tools to improve classification accuracy. Experiments also show that it is possible to extract useful information from the classification process itself in order to help users (clinicians and radiologists) to make more accurate predictions and reduce the number of possible classification mistakes

    Intraoperative in vivo confocal laser endomicroscopy imaging at glioma margins: can we detect tumor infiltration?

    No full text
    Confocal laser endomicroscopy (CLE) is a US Food and Drug Administration-cleared intraoperative real-time fluorescence-based cellular resolution imaging technology that has been shown to image brain tumor histoarchitecture rapidly in vivo during neuro-oncological surgical procedures. An important goal for successful intraoperative implementation is in vivo use at the margins of infiltrating gliomas. However, CLE use at glioma margins has not been well studied. Matching in vivo CLE images and tissue biopsies acquired at glioma margin regions of interest (ROIs) were collected from 2 institutions. All images were reviewed by 4 neuropathologists experienced in CLE. A scoring system based on the pathological features was implemented to score CLE and H&E images from each ROI on a scale from 0 to 5. Based on the H&E scores, all ROIs were divided into a low tumor probability (LTP) group (scores 0-2) and a high tumor probability (HTP) group (scores 3-5). The concordance between CLE and H&E scores regarding tumor probability was determined. The intraclass correlation coefficient (ICC) and diagnostic performance were calculated. Fifty-six glioma margin ROIs were included for analysis. Interrater reliability of the scoring system was excellent when used for H&E images (ICC [95% CI] 0.91 [0.86-0.94]) and moderate when used for CLE images (ICC [95% CI] 0.69 [0.40-0.83]). The ICCs (95% CIs) of the LTP group (0.68 [0.40-0.83]) and HTP group (0.68 [0.39-0.83]) did not differ significantly. The concordance between CLE and H&E scores was 61.6%. The sensitivity and specificity values of the scoring system were 79% and 37%. The positive predictive value (PPV) and negative predictive value were 65% and 53%, respectively. Concordance, sensitivity, and PPV were greater in the HTP group than in the LTP group. Specificity was higher in the newly diagnosed group than in the recurrent group. CLE may detect tumor infiltration at glioma margins. However, it is not currently dependable, especially in scenarios where low probability of tumor infiltration is expected. The proposed scoring system has excellent intrinsic interrater reliability, but its interrater reliability is only moderate when used with CLE images. These results suggest that this technology requires further exploration as a method for consistent actionable intraoperative guidance with high dependability across the range of tumor margin scenarios. Specific-binding and/or tumor-specific fluorophores, a CLE image atlas, and a consensus guideline for image interpretation may help with the translational utility of CLE

    Current perspectives in gliomas

    No full text
    corecore