48 research outputs found

    A dual-chamber method for quantifying the effects of atmospheric perturbations on secondary organic aerosol formation from biomass burning emissions

    Get PDF
    Biomass burning (BB) is a major source of atmospheric pollutants. Field and laboratory studies indicate that secondary organic aerosol (SOA) formation from BB emissions is highly variable. We investigated sources of this variability using a novel dual-smog-chamber method that directly compares the SOA formation from the same BB emissions under two different atmospheric conditions. During each experiment, we filled two identical Teflon smog chambers simultaneously with BB emissions from the same fire. We then perturbed the smoke with UV lights, UV lights plus nitrous acid (HONO), or dark ozone in one or both chambers. These perturbations caused SOA formation in nearly every experiment with an average organic aerosol (OA) mass enhancement ratio of 1.78 ± 0.91 (mean ± 1σ). However, the effects of the perturbations were highly variable ranging with OA mass enhancement ratios ranging from 0.7 (30% loss of OA mass) to 4.4 across the set of perturbation experiments. There was no apparent relationship between OA enhancement and perturbation type, fuel type, and modified combustion efficiency. To better isolate the effects of different perturbations, we report dual-chamber enhancement (DUCE), which is the quantity of the effects of a perturbation relative to a reference condition. DUCE values were also highly variable, even for the same perturbation and fuel type. Gas measurements indicate substantial burn-to-burn variability in the magnitude and composition of SOA precursor emissions, even in repeated burns of the same fuel under nominally identical conditions. Therefore, the effects of different atmospheric perturbations on SOA formation from BB emissions appear to be less important than burn-to-burn variability

    Impact of Sulfur Oxides on Mercury Capture by Activated Carbon

    No full text

    Simulations of vehicle-induced mixing and near-road aerosol microphysics using computational fluid dynamics

    No full text
    Understanding the fate of ultrafine particles (UFP), especially from combustion sources, is essential to assess their impact on health and climate. Here, we present simulations of the behavior of UFP in the near-roadway environment (up to 300 m downwind) based on a model with coupled computational fluid dynamics (CFD) and aerosol microphysics. It is found that vehicle-induced mixing (VIM) caused by the combined effect of vehicle wake formation and production of turbulent kinetic energy plays an important role in downwind dilution of pollutants. Various methodologies for simulating VIM are explored, and a computationally efficient approach based on an effective roughness length for vehicle-induced mixing is proposed. Whereas the coagulation behavior of ultrafine particles is relatively well understood, condensation and/or evaporation can have equally large or larger impacts on the number and sizes of particles downwind of a roadway. Through a set of sensitivity simulations, we show that the particle losses are potentially significant via evaporation but depend strongly on several parameters or processes that are poorly understood and difficult to fully constrain for on-road traffic using measurements: the volatility distribution of organic species and gas-phase concentrations of semi-volatile organics

    Demonstration of a Low-Cost Multi-Pollutant Network to Quantify Intra-Urban Spatial Variations in Air Pollutant Source Impacts and to Evaluate Environmental Justice

    No full text
    Air quality monitoring has traditionally been conducted using sparsely distributed, expensive reference monitors. To understand variations in PM2.5 on a finely resolved spatiotemporal scale a dense network of over 40 low-cost monitors was deployed throughout and around Pittsburgh, Pennsylvania, USA. Monitor locations covered a wide range of site types with varying traffic and restaurant density, varying influences from local sources, and varying socioeconomic (environmental justice, EJ) characteristics. Variability between and within site groupings was observed. Concentrations were higher near the source-influenced sites than the Urban or Suburban Residential sites. Gaseous pollutants (NO2 and SO2) were used to differentiate between traffic (higher NO2 concentrations) and industrial (higher SO2 concentrations) sources of PM2.5. Statistical analysis proved these differences to be significant (coefficient of divergence > 0.2). The highest mean PM2.5 concentrations were measured downwind (east) of the two industrial facilities while background level PM2.5 concentrations were measured at similar distances upwind (west) of the point sources. Socioeconomic factors, including the fraction of non-white population and fraction of population living under the poverty line, were not correlated with increases in PM2.5 or NO2 concentration. The analysis conducted here highlights differences in PM2.5 concentration within site groupings that have similar land use thus demonstrating the utility of a dense sensor network. Our network captures temporospatial pollutant patterns that sparse regulatory networks cannot

    Asthma prevalence and control among schoolchildren residing near outdoor air pollution sites

    No full text
    INTRODUCTION: Outdoor air pollution (OAP) contributes to poor asthma outcomes and remains a public health concern in Pittsburgh. The purpose of this study was to determine the prevalence of childhood asthma and its rate of control among Pittsburgh schoolchildren residing near OAP sites. METHODS: Participants were recruited from schools near OAP sites. Asthma prevalence and control were assessed using a validated survey. Demographics and socioeconomic status were collected by survey, BMI was calculated, secondhand smoke (SHS) exposure was assessed by salivary cotinine levels, and OAP was assessed by mobile platform monitoring. Multivariate analysis adjusted for confounders. RESULTS: In 1202 Pittsburgh elementary school students surveyed, 50.9% were female, average age was 8.5?years (SD = 1.9), 52.2% were African American and 60.6% had public health insurance. SHS exposure was relatively high at 33.9%, 17.1% of students were obese, and 70% had exposure to particulate matter (PM) greater than the World Health Organization standard of 10??g/m. Overall prevalence of asthma was 22.5% with PM, nitric oxide (NO), sulfur (S), and zinc (Zn) significantly related to odds of asthma. Among the 270 children previously diagnosed with asthma, 59.3% were not well controlled with PM, black carbon, and silicon (Si) significantly related to odds of uncontrolled asthma. CONCLUSIONS: These results demonstrate that asthma prevalence and poor disease control are significantly elevated in Pittsburgh schoolchildren exposed to high levels of OAP. Future efforts need to focus on primary prevention of asthma by reducing exposure to OAP in at risk populations

    Quantifying Urban Spatial Variations of Anthropogenic VOC Concentrations and Source Contributions with a Mobile Sampling Platform

    No full text
    Volatile organic compounds (VOCs) are important atmospheric constituents because they contribute to formation of ozone and secondary aerosols, and because some VOCs are toxic air pollutants. We measured concentrations of a suite of anthropogenic VOCs during summer and winter at 70 locations representing different microenvironments around Pittsburgh, PA. The sampling sites were classified both by land use (e.g., high versus low traffic) and grouped based on geographic similarity and proximity. There was roughly a factor of two variation in both total VOC and single-ring aromatic VOC concentrations across the site groups. Concentrations were roughly 25% higher in winter than summer. Source apportionment with positive matrix factorization reveals that the major VOC sources are gasoline vehicles, solvent evaporation, diesel vehicles, and two factors attributed to industrial emissions. While we expected to observe significant spatial variability in the source impacts across the sampling domain, we instead found that source impacts were relatively homogeneous
    corecore