119 research outputs found

    Deferiprone and gallium-protoporphyrin have the capacity to potentiate the activity of antibiotics in Staphylococcus aureus small colony variants

    Get PDF
    Small colony variants (SCVs) of bacteria like Staphylococcus aureus are characterized by a reduced colony size and are linked to increased antibiotic tolerance and resistance. Their altered expression of virulence factors, slow growing properties and their ability to form biofilms make the eradication of SCVs challenging. In the context of biofilm-related infectious diseases involving S. aureus SCVs, a therapy targeting bacterial iron metabolism was evaluated. The combination of the iron-chelator deferiprone (Def) and the heme-analog gallium-protoporphyrin (GaPP), in solution and incorporated in a surgical wound gel, was tested for activity against planktonic and sessile SCVs. To this end, the activity of Def-GaPP was assessed against planktonic S. aureus SCVs, as well as against in vitro and in vivo biofilms in the colony biofilm model, an artificial wound model and a Caenorhabditis elegans infection model. While Def alone failed to show substantial antibacterial activity, GaPP and the combination of Def-GaPP demonstrated concentration- and strain-dependent antibacterial properties. Specifically, the Def-GaPP combination significantly reduced the bacterial load in an artificial wound model and increased the survival of S. aureus SCV infected C. elegans. When Def-GaPP were combined with gentamicin or ciprofloxacin, the triple combinations exceeded the antibiofilm activity of the individual compounds in the colony biofilm model. In targeting bacterial iron metabolism, Def-GaPP showed significant activity against planktonic and sessile SCVs. Moreover, Def-GaPP could potentiate the activity of gentamicin and ciprofloxacin. Delivered in a wound healing gel, Def-GaPP showed promise as a new topical strategy against infections with S. aureus SCVs.Katharina Richter, Nicky Thomas, Guimin Zhang, Clive A. Prestidge, Tom Coenye, Peter-John Wormald and Sarah Vreugd

    The effect of drug ionization on lipid-based formulations for the oral delivery of anti-psychotics

    Get PDF
    Lipid-based formulations (LBFs) are well-known to improve the oral bioavailability of poorly water-soluble drugs (PWSDs) by presenting the drug to the gastrointestinal environment in a molecularly dispersed state, thus avoiding the rate-limiting dissolution step. Risperidone and lurasidone are antipsychotics drugs which experience erratic and variable absorption, leading to a low oral bioavailability. The aim of this research was to develop and investigate the performance of risperidone and lurasidone when formulated as an emulsion and silica-lipid hybrid (SLH). Lurasidone and risperidone were dissolved in Capmul® MCM at 100% and 80% their equilibrium solubility, respectively, prior to forming a sub-micron emulsion. SLH microparticles were fabricated by spray-drying a silica stabilised sub-micron emulsion to form a solid powder. The performances of the formulations were evaluated in simulated intestinal media under digesting conditions, where the emulsion and SLH provided a 17-fold and 23-fold increase in LUR solubilisation, respectively. However, the performance of RIS was reduced by 2.2-fold when encapsulated within SLH compared to pure drug. Owing to its pKa, RIS adsorbed to the silica and thus, dissolution was significantly hindered. The results reveal that LBFs may not overcome the challenges of all PWSDs and physiochemical properties must be carefully considered when predicting drug performance.</p

    Polymeric Nanosuspensions for Enhanced Dissolution of Water Insoluble Drugs

    Get PDF
    The aim of the present research is to formulate and evaluate polymeric nanosuspensions containing three model water insoluble drugs, nifedipine (NIF), carbamazepine (CBZ), and ibuprofen (IBU) with various physicochemical properties. The nanosuspensions were prepared from hydroxypropyl methylcellulose (HPMC) and polyvinylpyrrolidone (PVP) by a cosolvent technique with polyethylene glycol (PEG-300) and water as the cosolvents. Physicochemical and morphological characteristics of the nanosuspensions (particle size, polydispersity index, and crystallinity) have been correlated with the drug release behaviour. The effects of polymer, drug ratio on the physical, morphological, and dissolution characteristics of the drugs are reported. Drug release is significantly enhanced from the nanosuspensions; for example, the maximum NIF, IBU, and CBZ concentrations after 8-hour dissolution are increased approximately 37, 2, and 1.2 times, respectively, in comparison with the pure powdered drugs. Based on this solubilization enhancement performance, the nanosuspensions have potential for increasing the orally dosed bioavailability of NIF, IBU, and CBZ

    Solidification to improve the biopharmaceutical performance of SEDDS:Opportunities and challenges

    Get PDF
    Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a solubilised state during gastrointestinal transit. However, the promising biopharmaceutical benefits of liquid lipid formulations has not translated into widespread commercial success, due to their susceptibility to long term storage and in vivo precipitation issues. One strategy that has emerged to overcome such limitations, is to combine the solubilisation and dissolution enhancing properties of lipids with the stabilising effects of solid carrier materials. The development of intelligent hybrid drug formulations has presented new opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for lipophilic therapeutics. Specific emphasis of this review is placed on the impact of solidification approaches and excipients on the biopharmaceutical performance of self-emulsifying lipids, with findings highlighting the key design considerations that should be implemented when developing hybrid lipid-based formulations

    Enhancing the cellular uptake and antibacterial activity of rifampicin through encapsulation in mesoporous silica nanoparticles

    Get PDF
    An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection

    A Liposome-Micelle-Hybrid (LMH) Oral Delivery System for Poorly Water-Soluble Drugs: Enhancing Solubilisation and Intestinal Transport

    Get PDF
    A novel liposome-micelle-hybrid (LMH) carrier system was developed as a superior oral drug delivery platform compared to conventional liposome or micelle formulations. The optimal LMH system was engineered by encapsulating TPGS micelles in the aqueous core of liposomes and its efficacy for oral delivery was demonstrated using lovastatin (LOV) as a model poorly soluble drug with P-gp (permeability glycoprotein) limited intestinal absorption. LOV-LMH was characterised as unilamellar, spherical vesicles encapsulating micellar structures within the interior aqueous core and showing an average diameter below 200 nm. LMH demonstrated enhanced drug loading, water apparent solubility and extended/controlled release of LOV compared to conventional liposomes and micelles. LMH exhibited enhanced LOV absorption and transportation in a Caco-2 cell monolayer model of the intestine by inhibiting the P-gp transporter system compared to free LOV. The LMH system is a promising novel oral delivery approach for enhancing bioavailability of poorly water-soluble drugs, especially those presenting P-gp effluxes limited absorption

    Hydrophilic Silica Nanoparticles at the PDMS Droplet−Water Interface

    No full text
    corecore