708 research outputs found

    Experimental evidence of a fractal dissipative regime in high-T_c superconductors

    Full text link
    We report on our experimental evidence of a substantial geometrical ingredient characterizing the problem of incipient dissipation in high-T_c superconductors(HTS): high-resolution studies of differential resistance-current characteristics in absence of magnetic field enabled us to identify and quantify the fractal dissipative regime inside which the actual current-carrying medium is an object of fractal geometry. The discovery of a fractal regime proves the reality and consistency of critical-phenomena scenario as a model for dissipation in inhomogeneous and disordered HTS, gives the experimentally-based value of the relevant finite-size scaling exponent and offers some interesting new guidelines to the problem of pairing mechanisms in HTS.Comment: 5 pages, 3 figures, RevTex; Accepted for publication in Physical Review B; (figures enlarged

    Incommensurate magnetic ordering in Cu2Te2O5X2 (X=Cl, Br) studied by single crystal neutron diffraction

    Full text link
    Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors k'Cl ~ -0.150,0.422,1/2 and k'Br ~ -0.172,0.356,1/2 and stable below TN=18 K for X=Cl and TN=11 K for X=Br is proposed. A feature of the model, common to both the bromide and chloride, is a canted coplanar motif for the 4 Cu2+ spins on each tetrahedron which rotates on a helix from cell to cell following the propagation vector. The Cu2+magnetic moment determined for X=Br, 0.395(5)muB, is significantly less than for X=Cl, 0.88(1)muB at 2K. The magnetic structure of the chloride associated with the wave-vector k' differs from that determined previously for the wave vector k~0.150,0.422,1/2 [O. Zaharko et.al. Phys. Rev. Lett. 93, 217206 (2004)]

    SUSY a consequence of smoothness?

    Full text link
    The consequences of certain simple assumptions like smoothness of ground state properties and vanishing of the vacuum energy (at least perturbatively) are explored. It would be interesting from the point of view of building realistic theories to obtain these properties without supersymmetry. Here we show, however, at least in some quantum mechanical models, that these simple assumptions lead to supersymmetric theories.Comment: 26 pages; revised version of paper (November 15 2000

    Giant dispersion of critical currents in superconductor with fractal clusters of a normal phase

    Full text link
    The influence of fractal clusters of a normal phase on the dynamics of a magnetic flux trapped in a percolative superconductor is considered. The critical current distribution and the current-voltage characteristics of fractal superconducting structures in the resistive state are obtained for an arbitrary fractal dimension of the cluster boundaries. The range of fractal dimensions, where the dispersion of critical currents becomes infinite, is found. It is revealed that the fractality of clusters depresses of the electric field caused by the magnetic flux motion thus increasing the critical current value. It is expected that the maximum current-carrying capability of a superconductor can be achieved in the region of giant dispersion of critical currents.Comment: 7 pages with 3 figure

    Curvature-corrected dilatonic black holes and black hole -- string transition

    Full text link
    We investigate extremal charged black hole solutions in the four-dimensional string frame Gauss-Bonnet gravity with the Maxwell field and the dilaton. Without curvature corrections, the extremal electrically charged dilatonic black holes have singular horizon and zero Bekenstein entropy. When the Gauss-Bonnet term is switched on, the horizon radius expands to a finite value provided curvature corrections are strong enough. Below a certain threshold value of the Gauss-Bonnet coupling the extremal black hole solutions cease to exist. Since decreasing Gauss-Bonnet coupling corresponds to decreasing string coupling gsg_s, the situation can tentatively be interpreted as classical indication on the black hole -- string transition. Previously the extremal dilaton black holes were studied in the Einstein-frame version of the Gauss-Bonnet gravity. Here we work in the string frame version of this theory with the S-duality symmetric dilaton function as required by the heterotic string theory.Comment: 14 pages, 2 figure

    Demonstration experiments for solid state physics using a table top mechanical Stirling refrigerator

    Full text link
    Liquid free cryogenic devices are acquiring importance in basic science and engineering. But they can also lead to improvements in teaching low temperature an solid state physics to graduate students and specialists. Most of the devices are relatively expensive, but small sized equipment is slowly becoming available. Here, we have designed several simple experiments which can be performed using a small Stirling refrigerator. We discuss the measurement of the critical current and temperature of a bulk YBa2Cu3O(7-d) (YBCO) sample, the observation of the levitation of a magnet over a YBCO disk when cooled below the critical temperature and the observation of a phase transition using ac calorimetry. The equipment can be easily handled by students, and also used to teach the principles of liquid free cooling

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004

    Incommensurate magnetism in the coupled spin tetrahedra system Cu2Te2O5Cl2

    Full text link
    Neutron scattering studies on powder and single crystals have provided new evidences for unconventional magnetism in Cu2Te2O5Cl2. The compound is built from tetrahedral clusters of S=1/2 Cu2+ spins located on a tetragonal lattice. Magnetic ordering, emerging at TN=18.2 K, leads to a very complex multi-domain, most likely degenerate, ground state, which is characterized by an incommensurate (ICM) wave vector k ~ [0.15, 0.42,1/2]. The Cu2+ ions carry a magnetic moment of 0.67(1) mB/ Cu2+ at 1.5 K and form a four helices spin arrangement with two canted pairs within the tetrahedra. A domain redistribution is observed when a magnetic field is applied in the tetragonal plane (Hc≈0.5 T), but not for H||c up to 4 T. The excitation spectrum is characterized by two well-defined modes, one completely dispersionless at 6.0 meV, the other strongly dispersing to a gap of 2 meV. The reason for such complex ground state and spin excitations may be geometrical frustration of the Cu2+ spins within the tetrahedra, intra- and inter-tetrahedral couplings having similar strengths and strong Dzyaloshinski-Moriya anisotropy. Candidates for the dominant intra- and inter-tetrahedral interactions are proposed
    • …
    corecore