428 research outputs found

    On the Evidence for Axion-like Particles from Active Galactic Nuclei

    Get PDF
    Burrage, Davis, and Shaw recently suggested exploiting the correlations between high and low energy luminosities of astrophysical objects to probe possible mixing between photons and axion-like particles (ALP) in magnetic field regions. They also presented evidence for the existence of ALP's by analyzing the optical/UV and X-ray monochromatic luminosities of AGNs. We extend their work by using the monochromatic luminosities of 320 unobscured Active Galactic Nuclei from the Sloan Digital Sky Survey/Xmm-Newton Quasar Survey (Young et al., 2009), which allows the exploration of 18 different combinations of optical/UV and X-ray monochromatic luminosities. However, we do not find compelling evidence for the existence of ALPs. Moreover, it appears that the signal reported by Burrage et al. is more likely due to X-ray absorption rather than to photon-ALP oscillation.Comment: 16 pages, 12 figures. Updated to reflect the minor changes introduced in the published versio

    Degeneracy measures for the algebraic classification of numerical spacetimes

    Full text link
    We study the issue of algebraic classification of the Weyl curvature tensor, with a particular focus on numerical relativity simulations. The spacetimes of interest in this context, binary black hole mergers, and the ringdowns that follow them, present subtleties in that they are generically, strictly speaking, Type I, but in many regions approximately, in some sense, Type D. To provide meaning to any claims of "approximate" Petrov class, one must define a measure of degeneracy on the space of null rays at a point. We will investigate such a measure, used recently to argue that certain binary black hole merger simulations ring down to the Kerr geometry, after hanging up for some time in Petrov Type II. In particular, we argue that this hangup in Petrov Type II is an artefact of the particular measure being used, and that a geometrically better-motivated measure shows a black hole merger produced by our group settling directly to Petrov Type D.Comment: 14 pages, 7 figures. Version 2 adds two references

    Testing the Warm Dark Matter paradigm with large-scale structures

    Full text link
    We explore the impact of a LWDM cosmological scenario on the clustering properties of large-scale structure in the Universe. We do this by extending the halo model. The new development is that we consider two components to the mass density: one arising from mass in collapsed haloes, and the second from a smooth component of uncollapsed mass. Assuming that the nonlinear clustering of dark matter haloes can be understood, then from conservation arguments one can precisely calculate the clustering properties of the smooth component and its cross-correlation with haloes. We then explore how the three main ingredients of the halo calculations, the mass function, bias and density profiles are affected by WDM. We show that, relative to CDM: the mass function is suppressed by ~50%, for masses ~100 times the free-streaming mass-scale; the bias of low mass haloes can be boosted by up to 20%; core densities of haloes can be suppressed. We also examine the impact of relic thermal velocities on the density profiles, and find that these effects are constrained to scales r<1 kpc/h, and hence of little importance for dark matter tests, owing to uncertainties in the baryonic physics. We use our modified halo model to calculate the non-linear matter power spectrum, and find significant small-scale power in the model. However, relative to the CDM case, the power is suppressed. We then calculate the expected signal and noise that our set of LWDM models would give for a future weak lensing mission. We show that the models should in principle be separable at high significance. Finally, using the Fisher matrix formalism we forecast the limit on the WDM particle mass for a future full-sky weak lensing mission like Euclid or LSST. With Planck priors and using multipoles l<5000, we find that a lower limit of 2.6 keV should be easily achievable.Comment: Replaced with version accepted for publication in PRD. Inclusion of: new figure showing dependence of predictions on cut-off mass; new discussion of mass function; updated refs. 18 pages, 10 Figure

    Using SN Ia Light Curve Shapes to Measure The Hubble Constant

    Get PDF
    We present an empirical method which uses visual band light curve shapes (LCS) to estimate the luminosity of type Ia supernovae (SN Ia). This method is first applied to a ``training set'' of 8 SN Ia light curves with independent distance estimates to derive the correlation between the LCS and the luminosity. We employ a linear estimation algorithm of the type developed by Rybicki and Press (1992). The result is similar to that obtained by Hamuy et al. (1995a) with the advantage that LCS produces quantitative error estimates for the distance. We then examine the light curves for 13 SN Ia to determine the LCS distances of these supernovae. The Hubble diagram constructed using these LCS distances has a remarkably small dispersion of σV\sigma_V = 0.21 mag. We use the light curve of SN 1972E and the Cepheid distance to NGC 5253 to derive 67±767 \pm 7 km s−1^{-1} Mpc−1^{-1} for the Hubble constant.Comment: 10 pages + 2 figures, Postscript file includes text and figures, Submitted to Ap.J. (Letters), Harvard-Smithsonian Center for Astrophysics Preprint 499

    Classical Disordered Ground States: Super-Ideal Gases, and Stealth and Equi-Luminous Materials

    Full text link
    Using a collective coordinate numerical optimization procedure, we construct ground-state configurations of interacting particle systems in various space dimensions so that the scattering of radiation exactly matches a prescribed pattern for a set of wave vectors. We show that the constructed ground states are, counterintuitively, disordered (i.e., possess no long-range order) in the infinite-volume limit. We focus on three classes of configurations with unique radiation scattering characteristics: (i)``stealth'' materials, which are transparent to incident radiation at certain wavelengths; (ii)``super-ideal'' gases, which scatter radiation identically to that of an ensemble of ideal gas configurations for a selected set of wave vectors; and (iii)``equi-luminous'' materials, which scatter radiation equally intensely for a selected set of wave vectors. We find that ground-state configurations have an increased tendency to contain clusters of particles as one increases the prescribed luminosity. Limitations and consequences of this procedure are detailed.Comment: 44 pages, 16 figures, revtek

    Symmetrization and enhancement of the continuous Morlet transform

    Full text link
    The forward and inverse wavelet transform using the continuous Morlet basis may be symmetrized by using an appropriate normalization factor. The loss of response due to wavelet truncation is addressed through a renormalization of the wavelet based on power. The spectral density has physical units which may be related to the squared amplitude of the signal, as do its margins the mean wavelet power and the integrated instant power, giving a quantitative estimate of the power density with temporal resolution. Deconvolution with the wavelet response matrix reduces the spectral leakage and produces an enhanced wavelet spectrum providing maximum resolution of the harmonic content of a signal. Applications to data analysis are discussed.Comment: 12 pages, 8 figures, 2 tables, minor revision, final versio

    Untwisting of a Strained Cholesteric Elastomer by Disclination Loop Nucleation

    Full text link
    The application of a sufficiently strong strain perpendicular to the pitch axis of a monodomain cholesteric elastomer unwinds the cholesteric helix. Previous theoretical analyses of this transition ignored the effects of Frank elasticity which we include here. We find that the strain needed to unwind the helix is reduced because of the Frank penalty and the cholesteric state becomes metastable above the transition. We consider in detail a previously proposed mechanism by which the topologically stable helical texture is removed in the metastable state, namely by the nucleation of twist disclination loops in the plane perpendicular to the pitch axis. We present an approximate calculation of the barrier energy for this nucleation process which neglects possible spatial variation of the strain fields in the elastomer, as well as a more accurate calculation based on a finite element modeling of the elastomer.Comment: 12 pages, 9 figure

    Minimizing the stochasticity of halos in large-scale structure surveys

    Full text link
    In recent work (Seljak, Hamaus and Desjacques 2009) it was found that weighting central halo galaxies by halo mass can significantly suppress their stochasticity relative to the dark matter, well below the Poisson model expectation. In this paper we extend this study with the goal of finding the optimal mass-dependent halo weighting and use NN-body simulations to perform a general analysis of halo stochasticity and its dependence on halo mass. We investigate the stochasticity matrix, defined as Cij≡<(δi−biδm)(δj−bjδm)>C_{ij}\equiv<(\delta_i -b_i\delta_m)(\delta_j-b_j\delta_m)>, where δm\delta_m is the dark matter overdensity in Fourier space, δi\delta_i the halo overdensity of the ii-th halo mass bin and bib_i the halo bias. In contrast to the Poisson model predictions we detect nonvanishing correlations between different mass bins. We also find the diagonal terms to be sub-Poissonian for the highest-mass halos. The diagonalization of this matrix results in one large and one low eigenvalue, with the remaining eigenvalues close to the Poisson prediction 1/nˉ1/\bar{n}, where nˉ\bar{n} is the mean halo number density. The eigenmode with the lowest eigenvalue contains most of the information and the corresponding eigenvector provides an optimal weighting function to minimize the stochasticity between halos and dark matter. We find this optimal weighting function to match linear mass weighting at high masses, while at the low-mass end the weights approach a constant whose value depends on the low-mass cut in the halo mass function. Finally, we employ the halo model to derive the stochasticity matrix and the scale-dependent bias from an analytical perspective. It is remarkably successful in reproducing our numerical results and predicts that the stochasticity between halos and the dark matter can be reduced further when going to halo masses lower than we can resolve in current simulations.Comment: 17 pages, 14 figures, matched the published version in Phys. Rev. D including one new figur

    The Effects of Gravitational Back-Reaction on Cosmological Perturbations

    Full text link
    Because of the non-linearity of the Einstein equations, the cosmological fluctuations which are generated during inflation on a wide range of wavelengths do not evolve independently. In particular, to second order in perturbation theory, the first order fluctuations back-react both on the background geometry and on the perturbations themselves. I this paper, the gravitational back-reaction of long wavelength (super-Hubble) scalar metric fluctuations on the perturbations themselves is investigated for a large class of inflationary models. Specifically, the equations describing the evolution of long wavelength cosmological metric and matter perturbations in an inflationary universe are solved to second order in both the amplitude of the perturbations and in the slow roll expansion parameter. Assuming that the linear fluctuations have random phases, we show that the fractional correction to the power spectrum due to the leading infrared back-reaction terms does not change the shape of the spectrum. The amplitude of the effect is suppressed by the product of the inflationary slow-roll parameter and the amplitude of the linear power spectrum. The non-gaussianity of the spectrum induced by back-reaction is commented upon.Comment: 9 page

    Brownian Thermal Noise in Multilayer Coated Mirrors

    Get PDF
    We analyze the Brownian thermal noise of a multi-layer dielectric coating, used in high-precision optical measurements including interferometric gravitational-wave detectors. We assume the coating material to be isotropic, and therefore study thermal noises arising from shear and bulk losses of the coating materials. We show that coating noise arises not only from layer thickness fluctuations, but also from fluctuations of the interface between the coating and substrate, driven by internal fluctuating stresses of the coating. In addition, the non-zero photoeleastic coefficients of the thin films modifies the influence of the thermal noise on the laser field. The thickness fluctuations of different layers are statistically independent, however, there exists a finite coherence between layers and the substrate-coating interface. Taking into account uncertainties in material parameters, we show that significant uncertainties still exist in estimating coating Brownian noise.Comment: 26 pages, 18 figure
    • …
    corecore