Using a collective coordinate numerical optimization procedure, we construct
ground-state configurations of interacting particle systems in various space
dimensions so that the scattering of radiation exactly matches a prescribed
pattern for a set of wave vectors. We show that the constructed ground states
are, counterintuitively, disordered (i.e., possess no long-range order) in the
infinite-volume limit. We focus on three classes of configurations with unique
radiation scattering characteristics: (i)``stealth'' materials, which are
transparent to incident radiation at certain wavelengths; (ii)``super-ideal''
gases, which scatter radiation identically to that of an ensemble of ideal gas
configurations for a selected set of wave vectors; and (iii)``equi-luminous''
materials, which scatter radiation equally intensely for a selected set of wave
vectors. We find that ground-state configurations have an increased tendency to
contain clusters of particles as one increases the prescribed luminosity.
Limitations and consequences of this procedure are detailed.Comment: 44 pages, 16 figures, revtek