12,759 research outputs found

    Fermion Masses from SO(10) Hermitian Matrices

    Full text link
    Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120 and 126 scalar multiplets. The mass matrices are restricted to be hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses and CKM matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and MSN matrices result as predictions.Comment: 23 pages. Small textual additions for clarification; formalism and results unchanged. Version to appear in Phys. Rev.

    Electronic Structure of Hyperkagome Na4Ir3O8

    Full text link
    We investigate the electronic structure of the frustrated magnet Na4Ir3O8 using density functional theory. Due to strong spin-orbit coupling, the hyperkagome lattice is characterized by a half-filled complex of states, making it a cubic iridium analogue of the high temperature superconducting cuprates. The implications of our results for this unique material are discussed.Comment: expanded discussion with extra figures - 6 pages, 10 figure

    Spin Hamiltonian of Hyperkagome Na4Ir3O8

    Full text link
    We derive the spin Hamiltonian for the quantum spin liquid Na4Ir3O8, and then estimate the direct and superexchange contributions between near neighbor iridium ions using a tight binding parametrization of the electronic structure. We find a magnitude of the exchange interaction comparable to experiment for a reasonable value of the on-site Coulomb repulsion. For one of the two tight binding parametrizations we have studied, the direct exchange term, which is isotropic, dominates the total exchange. This provides support for those theories proposed to describe this novel quantum spin liquid that assume an isotropic Heisenberg model.Comment: 9 pages, 4 figure

    Dynamic Matter-Wave Pulse Shaping

    Full text link
    In this paper we discuss possibilities to manipulate a matter-wave with time-dependent potentials. Assuming a specific setup on an atom chip, we explore how one can focus, accelerate, reflect, and stop an atomic wave packet, with, for example, electric fields from an array of electrodes. We also utilize this method to initiate coherent splitting. Special emphasis is put on the robustness of the control schemes. We begin with the wave packet of a single atom, and extend this to a BEC, in the Gross-Pitaevskii picture. In analogy to laser pulse shaping with its wide variety of applications, we expect this work to form the base for additional time-dependent potentials eventually leading to matter-wave pulse shaping with numerous application

    Determination of the zeta potential for highly charged colloidal suspensions

    Full text link
    We compute the electrostatic potential at the surface, or zeta potential ζ\zeta, of a charged particle embedded in a colloidal suspension using a hybrid mesoscopic model. We show that for weakly perturbing electric fields, the value of ζ\zeta obtained at steady state during electrophoresis is statistically indistinguishable from ζ\zeta in thermodynamic equilibrium. We quantify the effect of counterions concentration on ζ\zeta. We also evaluate the relevance of the lattice resolution for the calculation of ζ\zeta and discuss how to identify the effective electrostatic radius.Comment: 8 pages, 3 figures with 2 panel

    A variance-minimization scheme for optimizing Jastrow factors

    Get PDF
    We describe a new scheme for optimizing many-electron trial wave functions by minimizing the unreweighted variance of the energy using stochastic integration and correlated-sampling techniques. The scheme is restricted to parameters that are linear in the exponent of a Jastrow correlation factor, which are the most important parameters in the wave functions we use. The scheme is highly efficient and allows us to investigate the parameter space more closely than has been possible before. We search for multiple minima of the variance in the parameter space and compare the wave functions obtained using reweighted and unreweighted variance minimization.Comment: 19 pages; 12 figure

    Black Hole-Neutron Star Mergers: Disk Mass Predictions

    Full text link
    Determining the final result of black hole-neutron star mergers, and in particular the amount of matter remaining outside the black hole at late times and its properties, has been one of the main motivations behind the numerical simulation of these systems. Black hole-neutron star binaries are amongst the most likely progenitors of short gamma-ray bursts --- as long as massive (probably a few percents of a solar mass), hot accretion disks are formed around the black hole. Whether this actually happens strongly depends on the physical characteristics of the system, and in particular on the mass ratio, the spin of the black hole, and the radius of the neutron star. We present here a simple two-parameter model, fitted to existing numerical results, for the determination of the mass remaining outside the black hole a few milliseconds after a black hole-neutron star merger (i.e. the combined mass of the accretion disk, the tidal tail, and the potential ejecta). This model predicts the remnant mass within a few percents of the mass of the neutron star, at least for remnant masses up to 20% of the neutron star mass. Results across the range of parameters deemed to be the most likely astrophysically are presented here. We find that, for 10 solar mass black holes, massive disks are only possible for large neutron stars (R>12km), or quasi-extremal black hole spins (a/M>0.9). We also use our model to discuss how the equation of state of the neutron star affects the final remnant, and the strong influence that this can have on the rate of short gamma-ray bursts produced by black hole-neutron star mergers.Comment: 11 pages, 7 figure

    Revisiting the Constraint on the Helium Abundance from CMB

    Full text link
    We revisit the constraint on the primordial helium mass fraction Yp from observations of cosmic microwave background (CMB) alone. By minimizing chi square of recent CMB experiments over 6 other cosmological parameters, we obtained rather weak constraints as 0.17 < Yp < 0.52 at 1 sigma C.L. for a particular data set. We also study the future constraint on cosmological parameters when we take account of the prediction of the standard big bang nucleosynthesis (BBN) theory as a prior on the helium mass fraction where Yp can be fixed for a given energy density of baryon. We discuss the implications of the prediction of the standard BBN on the analysis of CMB.Comment: 15 pages, 5 figures, published versio

    Linear scaling electronic structure calculations and accurate sampling with noisy forces

    Full text link
    Numerical simulations based on electronic structure calculations are finding ever growing applications in many areas of physics. A major limiting factor is however the cubic scaling of the algorithms used. Building on previous work [F. R. Krajewski and M. Parrinello, Phys.Rev. B71, 233105 (2005)] we introduce a novel statistical method for evaluating the inter-atomic forces which scales linearly with system size and is applicable also to metals. The method is based on exact decomposition of the fermionic determinant and on a mapping onto a field theoretical expression. We solve exactly the problem of sampling the Boltzmann distribution with noisy forces. This novel approach can be used in such diverse fields as quantum chromodynamics, quantum Monte Carlo or colloidal physics.Comment: 5 pages, 2 figure

    A statistical mechanics model for free-for-all airplane passenger boarding

    Get PDF
    I present and discuss a model for the free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of the population of air travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with models which involve assigned seats. This model can also be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results may be of value to industry professionals as a useful description of this boarding method. However, it also has significant value as a pedagogical tool since it is a relatively unusual application of undergraduate level physics and it describes a situation with which many students and faculty may be familiar.Comment: version 1: 4 pages 2 figures version 2: 7 pages with 5 figure
    • …
    corecore