7,366 research outputs found

    Fermion Masses from SO(10) Hermitian Matrices

    Full text link
    Masses of fermions in the SO(10) 16-plet are constructed using only the 10, 120 and 126 scalar multiplets. The mass matrices are restricted to be hermitian and the theory is constructed to have certain assumed quark masses, charged lepton masses and CKM matrix in accord with data. The remaining free parameters are found by fitting to light neutrino masses and MSN matrices result as predictions.Comment: 23 pages. Small textual additions for clarification; formalism and results unchanged. Version to appear in Phys. Rev.

    Determination of the zeta potential for highly charged colloidal suspensions

    Full text link
    We compute the electrostatic potential at the surface, or zeta potential ζ\zeta, of a charged particle embedded in a colloidal suspension using a hybrid mesoscopic model. We show that for weakly perturbing electric fields, the value of ζ\zeta obtained at steady state during electrophoresis is statistically indistinguishable from ζ\zeta in thermodynamic equilibrium. We quantify the effect of counterions concentration on ζ\zeta. We also evaluate the relevance of the lattice resolution for the calculation of ζ\zeta and discuss how to identify the effective electrostatic radius.Comment: 8 pages, 3 figures with 2 panel

    Ab initio Molecular Dynamics in Adaptive Coordinates

    Full text link
    We present a new formulation of ab initio molecular dynamics which exploits the efficiency of plane waves in adaptive curvilinear coordinates, and thus provides an accurate treatment of first-row elements. The method is used to perform a molecular dynamics simulation of the CO_2 molecule, and allows to reproduce detailed features of its vibrational spectrum such as the splitting of the Raman sigma+_g mode caused by Fermi resonance. This new approach opens the way to highly accurate ab initio simulations of organic compounds.Comment: 11 pages, 3 PostScript figure

    Probing anisotropies of gravitational-wave backgroundswith a space-based interferometer II: Perturbative reconstruction of a low-frequency skymap

    Full text link
    We present a perturbative reconstruction method to make a skymap of gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In the presence of anisotropies in GWBs, the cross-correlated signals of observed GWBs are inherently time-dependent due to the non-stationarity of the gravitational-wave detector. Since the cross-correlated signal is obtained through an all-sky integral of primary signals convolving with the antenna pattern function of gravitational-wave detectors, the non-stationarity of cross-correlated signals, together with full knowledge of antenna pattern functions, can be used to reconstruct an intensity map of the GWBs. Here, we give two simple methods to reconstruct a skymap of GWBs based on the perturbative expansion in low-frequency regime. The first one is based on harmonic-Fourier representation of data streams and the second is based on "direct" time-series data. The latter method enables us to create a skymap in a direct manner. The reconstruction technique is demonstrated in the case of the Galactic gravitational wave background observed via planned space interferometer, LISA. Although the angular resolution of low-frequency skymap is rather restricted, the methodology presented here would be helpful in discriminating the GWBs of galactic origins by those of the extragalactic and/or cosmological origins.Comment: 23 pages, 12 figures, Phys.Rev.D (2005) in pres

    Transmission and Reflection of Bose-Einstein Condensates Incident on a Gaussian Potential Barrier

    Get PDF
    We investigate how Bose-Einstein condensates, whose initial state is either irrotational or contains a single vortex, scatter off a one-dimensional Gaussian potential barrier. We find that for low atom densities the vortex structure within the condensate is maintained during scattering, whereas at medium and high densities, multiple additional vortices can be created by the scattering process, resulting in complex dynamics and disruption of the atom cloud. This disruption originates from two different mechanisms associated respectively with the initial rotation of the atom cloud and the interference between the incident and reflected matter waves. We investigate how the reflection probability depends on the vorticity of the initial state and on the incident velocity of the Bose-Einstein condensate. To interpret our results, we derive a general analytical expression for the reflection coefficient of a rotating Bose-Einstein condensate that scatters off a spatially-varying one-dimensional potential.Comment: 9 pages, 9 figure

    A Solution of the Maxwell-Dirac Equations in 3+1 Dimensions

    Get PDF
    We investigate a class of localized, stationary, particular numerical solutions to the Maxwell-Dirac system of classical nonlinear field equations. The solutions are discrete energy eigenstates bound predominantly by the self-produced electric field.Comment: 12 pages, revtex, 2 figure

    Bloch oscillations of Bose-Einstein condensates: Quantum counterpart of dynamical instability

    Full text link
    We study the Bloch dynamics of a quasi one-dimensional Bose-Einstein condensate of cold atoms in a tilted optical lattice modeled by a Hamiltonian of Bose-Hubbard type: The corresponding mean-field system described by a discrete nonlinear Schr\"odinger equation can show a dynamical (or modulation) instability due to chaotic dynamics and equipartition over the quasimomentum modes. It is shown, that these phenomena are related to a depletion of the Floquet-Bogoliubov states and a decoherence of the condensate in the many-particle description. Three different types of dynamics are distinguished: (i) decaying oscillations in the region of dynamical instability, and (ii) persisting Bloch oscillations or (iii) periodic decay and revivals in the region of stability.Comment: 12 pages, 14 figure

    An Extension of the Fluctuation Theorem

    Full text link
    Heat fluctuations are studied in a dissipative system with both mechanical and stochastic components for a simple model: a Brownian particle dragged through water by a moving potential. An extended stationary state fluctuation theorem is derived. For infinite time, this reduces to the conventional fluctuation theorem only for small fluctuations; for large fluctuations, it gives a much larger ratio of the probabilities of the particle to absorb rather than supply heat. This persists for finite times and should be observable in experiments similar to a recent one of Wang et al.Comment: 12 pages, 1 eps figure in color (though intelligible in black and white

    Locating the source of projectile fluid droplets

    Full text link
    The ill-posed projectile problem of finding the source height from spattered droplets of viscous fluid is a longstanding obstacle to accident reconstruction and crime scene analysis. It is widely known how to infer the impact angle of droplets on a surface from the elongation of their impact profiles. However, the lack of velocity information makes finding the height of the origin from the impact position and angle of individual drops not possible. From aggregate statistics of the spatter and basic equations of projectile motion, we introduce a reciprocal correlation plot that is effective when the polar launch angle is concentrated in a narrow range. The vertical coordinate depends on the orientation of the spattered surface, and equals the tangent of the impact angle for a level surface. When the horizontal plot coordinate is twice the reciprocal of the impact distance, we can infer the source height as the slope of the data points in the reciprocal correlation plot. If the distribution of launch angles is not narrow, failure of the method is evident in the lack of linear correlation. We perform a number of experimental trials, as well as numerical calculations and show that the height estimate is insensitive to aerodynamic drag. Besides its possible relevance for crime investigation, reciprocal-plot analysis of spatter may find application to volcanism and other topics and is most immediately applicable for undergraduate science and engineering students in the context of crime-scene analysis.Comment: To appear in the American Journal of Physics (ms 23338). Improved readability and organization in this versio

    Numerical computation of real or complex elliptic integrals

    Full text link
    Algorithms for numerical computation of symmetric elliptic integrals of all three kinds are improved in several ways and extended to complex values of the variables (with some restrictions in the case of the integral of the third kind). Numerical check values, consistency checks, and relations to Legendre's integrals and Bulirsch's integrals are included
    • …
    corecore