28 research outputs found
Carrier concentrations in Bi_{2}Sr_{2-z}La_{z}CuO_{6+\delta} single crystals and their relation to Hall coefficient and thermopower
We measured the thermopower S and the Hall coefficients R_H of
Bi_{2}Sr_{2-z}La_{z}CuO_{6+\delta} (BSLCO) single crystals in a wide doping
range, in an effort to identify the actual hole concentrations per Cu, p, in
this system. It is found that the "universal" relation between the
room-temperature thermopower and T_c does not hold in the BSLCO system.
Instead, comparison of the temperature-dependent R_H data with other cuprate
systems is used as a tool to identify the actual p value. To justify this
approach, we compare normalized R_H(T) data of BSLCO, La_{2-x}Sr_{x}CuO_{4}
(LSCO), YBa_{2}Cu_{3}O_{y}, and Tl_{2}Ba_{2}CuO_{6+\delta}, and demonstrate
that the R_H(T) data of the LSCO system can be used as a template for the
estimation of p. The resulting phase diagram of p vs T_c for BSLCO suggests
that T_c is anomalously suppressed in the underdoped samples, becoming zero at
around p ~ 0.10, while the optimum T_c is achieved at p ~ 0.16 as expected.Comment: 4 pages including 5 figures, accepted for publication in Phys. Rev.
B, Rapid Communication
Nodal Quasiparticle Dispersion in Strongly Correlated d-wave Superconductors
We analyze the effects of a momentum-dependent self-energy on the
photoemission momentum distribution curve (MDC) lineshape, dispersion and
linewidth. We illustrate this general analysis by a detailed examination of
nodal quasiparticles in high Tc cuprates. We use variational results for the
nodal quasiparticle weight Z (which varies rapidly with hole doping x) and the
low energy Fermi velocity (which is independent of x), to show that
the high energy MDC dispersion , so that it is much
larger than the bare (band structure) velocity and also increases strongly with
underdoping. We also present arguments for why the low energy Fermi velocity
and the high energy dispersion are independent of the bare band structure at
small x. All of these results are in good agreement with earlier and recent
photoemission data [Zhou et al, Nature 423, 398 (2003)].Comment: 4 pages, 3 eps fig
Nature of the Electronic Excitations near the Brillouin Zone Boundary of BiSrCaCuO
Based on angle resolved photoemission spectra measured on different systems
at different dopings, momenta and photon energies, we show that the anomalously
large spectral linewidth in the region of optimal doped and
underdoped BiSrCaCuO has significant contributions
from the bilayer splitting, and that the scattering rate in this region is
considerably smaller than previously estimated. This new picture of the
electronic excitation near puts additional experimental constraints
on various microscopic theories and data analysis.Comment: 5 pages, 4 figure
The Superconductivity, Intragrain Penetration Depth and Meissner Effect of RuSr2(Gd,Ce)2Cu2O10+delta
The hole concentration (p)(delta), the transition temperature Tc, the
intragrain penetration depth lambda, and the Meissner effect were measured for
annealed RuSr2(Gd,Ce)2Cu2O10+delta samples. The intragrain superconducting
transition temperature Tc} varied from 17 to 40 K while the p changed by only
0.03 holes/CuO2. The intragrain superfluid-density 1/lambda^2 and the
diamagnetic drop of the field-cooled magnetization across Tc (the Meissner
effect), however, increased more than 10 times. All of these findings are in
disagreement with both the Tc vs. p and the Tc vs. 1/lambda^2 correlations
proposed for homogeneous cuprates, but are in line with a possible
phase-separation and the granularity associated with it.Comment: 7 pages, 6 figures, accepted for publication in Phys. Rev. B (May 2,
2002
Vortex Solid-Liquid Transition in BiSrCaCuO with a High Density of Strong Pins
The introduction of a large density of columnar defects in %underdoped
BiSrCaCuO crystals does not, at sufficiently low
vortex densities, increase the irreversibility line beyond the first order
transition (FOT) field of pristine crystals. At such low fields, the flux line
wandering length behaves as in pristine
%BiSrCaCuO crystals. Next, vortex positional
correlations along the --axis in the vortex Bose glass at fields above the
FOT are smaller than in the low--field vortex solid. Third, the
Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in
c-axis phase correlations. These observations are understood in terms of the
``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004
Revised version 18-3-200
Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x
We use 300 K reflectance data to investigate the normal-state electrodynamics
of the high temperature superconductor BiSrCaCuO
over a wide range of doping levels. The data show that at this temperature the
free carriers are coupled to a continuous spectrum of fluctuations. Assuming
the Marginal Fermi Liquid (MFL) form as a first approximation for the
fluctuation spectrum, the doping-dependent coupling constant can
be estimated directly from the slope of the reflectance spectrum. We find that
decreases smoothly with the hole doping level, from underdoped
samples with ( K) where to overdoped
samples with , ( K) where . An analysis of
the intercept and curvature of the reflectance spectrum shows deviations from
the MFL spectrum symmetrically placed at the optimal doping point . The
Kubo formula for the conductivity gives a better fit to the experiments with
the MFL spectrum up to 2000 cm and with an additional Drude component or
an additional Lorentz component up to 7000 cm. By comparing three
different model fits we conclude that the MFL channel is necessary for a good
fit to the reflectance data. Finally, we note that the monotonic variation of
the reflectance slope with doping provides us with an independent measure of
the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure
Carrier relaxation, pseudogap, and superconducting gap in high-Tc cuprates: A Raman scattering study
We describe results of electronic Raman-scattering experiments in differently
doped single crystals of Y-123 and Bi-2212. The comparison of AF insulating and
metallic samples suggests that at least the low-energy part of the spectra
originates predominantly from excitations of free carriers. We therefore
propose an analysis of the data in terms of a memory function approach.
Dynamical scattering rates and mass-enhancement factors for the carriers are
obtained. In B2g symmetry the Raman data compare well to the results obtained
from ordinary and optical transport. For underdoped materials the dc scattering
rates in B1g symmetry become temperature independent and considerably larger
than in B2g symmetry. This increasing anisotropy is accompanied by a loss of
spectral weight in B2g symmetry in the range between the superconducting
transition at Tc and a characteristic temperature T* of order room temperature
which compares well with the pseudogap temperature found in other experiments.
The energy range affected by the pseudogap is doping and temperature
independent. The integrated spectral loss is approximately 25% in underdoped
samples and becomes much weaker towards higher carrier concentration. In
underdoped samples, superconductivity related features in the spectra can be
observed only in B2g symmetry. The peak frequencies scale with Tc. We do not
find a direct relation between the pseudogap and the superconducting gap.Comment: RevTeX, 21 pages, 24 gif figures. For PostScript with embedded eps
figures, see http://www.wmi.badw-muenchen.de/~opel/k2.htm
Magnetic Properties of YBa_2Cu_3O_{7-\delta} in a self-consistent approach: Comparison with Quantum-Monte-Carlo Simulations and Experiments
We analyze single-particle electronic and two-particle magnetic properties of
the Hubbard model in the underdoped and optimally-doped regime of \YBCO by
means of a modified version of the fluctuation-exchange approximation, which
only includes particle-hole fluctuations. Comparison of our results with
Quantum-Monte Carlo (QMC) calculations at relatively high temperatures () suggests to introduce a temperature renormalization in order to
improve the agreement between the two methods at intermediate and large values
of the interaction .
We evaluate the temperature dependence of the spin-lattice relaxation time
and of the spin-echo decay time and compare it with the results
of NMR measurements on an underdoped and an optimally doped \YBCO sample. For
it is possible to consistently adjust the parameters of the Hubbard
model in order to have a good {\it semi-quantitative} description of this
temperature dependence for temperatures larger than the spin gap as obtained
from NMR measurements. We also discuss the case , which is more
appropriate to describe magnetic and single-particle properties close to
half-filling. However, for this larger value of the agreement with QMC as
well as with experiments at finite doping is less satisfactory.Comment: Final version, to appear in Phys. Rev. B (sched. Feb. 99
Doping dependence of the superconducting gap in Bi2Sr2CaCu2O{8 + delta}
Bi2Sr2CaCu2O{8 + \delta} crystals with varying hole concentrations (0.12 < p
< 0.23) were studied to investigate the effects of doping on the symmetry and
magnitude of the superconducting gap. Electronic Raman scattering experiments
that sample regions of the Fermi surface near the diagonal (B_{2g}) and
principal axes (B_{1g}) of the Brillouin Zone have been utilized. The frequency
dependence of the Raman response function at low energies is found to be linear
for B_{2g} and cubic for B_{1g} (T< T_c). The latter observations have led us
to conclude that the doping dependence of the superconducting gap is consistent
with d_{x^2-y^2} symmetry, for slightly underdoped and overdoped crystals.
Studies of the pair-breaking peak found in the B_{1g} spectra demonstrate that
the magnitude of the maximum gap decreases monotonically with increasing hole
doping, for p > 0.12. Based on the magnitude of the B_{1g} renormalization, it
is found that the number of quasiparticles participating in pairing increases
monotonically with increased doping. On the other hand, the B_{2g} spectra show
a weak "pair-breaking peak" that follows a parabolic-like dependence on hole
concentration, for 0.12 < p < 0.23.Comment: 9 pages REvTex document including 8 eps figures; new table II;
changes to Fig. 5 and tex