105 research outputs found

    Does antenatal cholecalciferol supplementation affect the mode or timing of delivery? Post hoc analyses of the MAVIDOS randomized controlled trial

    Get PDF
    Background Observational studies relating maternal 25-hydroxyvitamin D status to timing and mode of delivery have reported inconsistent results. We assessed the effect of antenatal cholecalciferol supplementation on the incidence of preterm birth, delivery mode and post-partum haemorrhage (PPH). Methods MAVIDOS was a randomized, double-blind, placebo-controlled trial of 1000 IU/day cholecalciferol from 14 weeks’ gestation until delivery. Gestational age, mode of delivery [categorized as spontaneous vaginal delivery (SVD), instrumental (including forceps and vacuum extraction) or Caesarean section] and PPH (>500 ml estimated blood loss) were determined from medical records. Results A total of 965 women participated in the study until delivery. Gestation at birth and incidence of preterm birth (cholecalciferol 5.7%, placebo 4.5%, P = 0.43) were similar between the two treatment groups. SVD (versus instrumental or Caesarean delivery) was more likely in women randomized to cholecalciferol [Relative Risk (RR) 1.13, 95% confidence interval (CI) 1.02,1.25] due to lower instrumental (RR 0.68, 95%CI 0.51,0.91) but similar risk of Caesarean delivery (RR 0.94, 95%CI 0.74,1.19). PPH was less common in women randomized to cholecalciferol [32.1% compared with placebo (38.1%, P = 0.054) overall], but similar when stratified by delivery mode. Conclusions Antenatal cholecalciferol supplementation did not alter timing of birth or prevalence of preterm birth but demonstrated a possible effect on the likelihood of SVD

    Combining Asian and European genome-wide association studies of colorectal cancer improves risk prediction across racial and ethnic populations

    Get PDF
    Polygenic risk scores (PRS) have great potential to guide precision colorectal cancer (CRC) prevention by identifying those at higher risk to undertake targeted screening. However, current PRS using European ancestry data have sub-optimal performance in non-European ancestry populations, limiting their utility among these populations. Towards addressing this deficiency, we expand PRS development for CRC by incorporating Asian ancestry data (21,731 cases; 47,444 controls) into European ancestry training datasets (78,473 cases; 107,143 controls). The AUC estimates (95% CI) of PRS are 0.63(0.62-0.64), 0.59(0.57-0.61), 0.62(0.60-0.63), and 0.65(0.63-0.66) in independent datasets including 1681-3651 cases and 8696-115,105 controls of Asian, Black/African American, Latinx/Hispanic, and non-Hispanic White, respectively. They are significantly better than the European-centric PRS in all four major US racial and ethnic groups (p-values < 0.05). Further inclusion of non-European ancestry populations, especially Black/African American and Latinx/Hispanic, is needed to improve the risk prediction and enhance equity in applying PRS in clinical practice

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    • …
    corecore