29 research outputs found
Effects of Dietary Restriction on Cancer Development and Progression
The effects of caloric restriction on tumor growth and progression are known for
over a century. Indeed, fasting has been practiced for millennia, but just recently
has emerged the protective role that it may exert toward cells. Fasting cycles are
able to reprogram the cellular metabolism, by inducing protection against oxidative
stress and prolonging cellular longevity. The reduction of calorie intake as
well as short- or long-term fasting has been shown to protect against chronic and
degenerative diseases, such as diabetes, cardiovascular pathologies, and cancer.
In vitro and in vivo preclinical models showed that different restriction dietary
regimens may be effective against cancer onset and progression, by enhancing
therapy response and reducing its toxic side effects. Fasting-mediated beneficial
effects seem to be due to the reduction of inflammatory response and downregulation
of nutrient-related signaling pathways able to modulate cell proliferation
and apoptosis. In this chapter, we will discuss the most significant studies
present in literature regarding the molecular mechanisms by which dietary
restriction may contribute to prevent cancer onset, reduce its progression, and
positively affect the response to the treatments
GluRδ2 Expression in the Mature Cerebellum of Hotfoot Mice Promotes Parallel Fiber Synaptogenesis and Axonal Competition
Glutamate receptor delta 2 (GluRdelta2) is selectively expressed in the cerebellum, exclusively in the spines of the Purkinje cells (PCs) that are in contact with parallel fibers (PFs). Although its structure is similar to ionotropic glutamate receptors, it has no channel function and its ligand is unknown. The GluRdelta2-null mice, such as knockout and hotfoot have profoundly altered cerebellar circuitry, which causes ataxia and impaired motor learning. Notably, GluRdelta2 in PC-PF synapses regulates their maturation and strengthening and induces long term depression (LTD). In addition, GluRdelta2 participates in the highly territorial competition between the two excitatory inputs to the PC; the climbing fiber (CF), which innervates the proximal dendritic compartment, and the PF, which is connected to spiny distal branchlets. Recently, studies have suggested that GluRdelta2 acts as an adhesion molecule in PF synaptogenesis. Here, we provide in vivo and in vitro evidence that supports this hypothesis. Through lentiviral rescue in hotfoot mice, we noted a recovery of PC-PF contacts in the distal dendritic domain. In the proximal domain, we observed the formation of new spines that were innervated by PFs and a reduction in contact with the CF; ie, the pattern of innervation in the PC shifted to favor the PF input. Moreover, ectopic expression of GluRdelta2 in HEK293 cells that were cocultured with granule cells or in cerebellar Golgi cells in the mature brain induced the formation of new PF contacts. Collectively, our observations show that GluRdelta2 is an adhesion molecule that induces the formation of PF contacts independently of its cellular localization and promotes heterosynaptic competition in the PC proximal dendritic domain
Peripheral neuropathy in monoclonal gammopathy of undetermined significance: prevalence and immunopathogenetic studies
In an unselected series of patients with monoclonal gammopathy of undetermined significance (MGUS) we found neuropathy in 2 of 34 patients with IgG (6%), 2 of 14 with IgA (14%), and 8 of 26 with IgM MGUS (31%). The neuropathy was subclinical in 6 patients (1 IgG, 1 IgA, and 4 IgM). Patients with IgG or IgA MGUS had a prominent motor impairment with electrophysiologic and morphologic findings suggestive of predominant axonal degeneration. No deposit of the M-protein in sural nerve and no reactivity of the M-protein with nerve was detected in these patients. Patients with IgM MGUS had a prominent sensory impairment with evidence of predominant demyelination. In 6 of these patients the M-protein reacted with the myelin-associated glycoprotein (MAG). The higher prevalence of neuropathy in patients with IgM MGUS may be related to the frequent reactivity of IgM M-proteins with MAG