6 research outputs found

    Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR-7-dependent lupus.

    Get PDF
    The peptidylarginine deiminases PAD2 and PAD4 are implicated in the pathogenesis of several autoimmune diseases. PAD4 may be pathogenic in systemic lupus erythematosus (SLE) through its role in neutrophil extracellular trap (NET) formation that promotes autoantigen externalization, immune dysregulation, and organ damage. The role of this enzyme in mouse models of autoimmunity remains unclear, as pan-PAD chemical inhibitors improve clinical phenotype, whereas PAD4-KO models have given conflicting results. The role of PAD2 in SLE has not been investigated. The differential roles of PAD2 and PAD4 in TLR-7-dependent lupus autoimmunity were examined. Padi4-/- displayed decreased autoantibodies, type I IFN responses, immune cell activation, vascular dysfunction, and NET immunogenicity. Padi2-/- mice showed abrogation of Th subset polarization, with some disease manifestations reduced compared with WT but to a lesser extent than Padi4-/- mice. RNA sequencing analysis revealed distinct modulation of immune-related pathways in PAD-KO lymphoid organs. Human T cells express both PADs and, when exposed to either PAD2 or PAD4 inhibitors, displayed abrogation of Th1 polarization. These results suggest that targeting PAD2 and/or PAD4 activity modulates dysregulated TLR-7-dependent immune responses in lupus through differential effects of innate and adaptive immunity. Compounds that target PADs may have potential therapeutic roles in T cell-mediated diseases

    Iterative Conversion of Cyclin Binding Groove Peptides into Drug like CDK Inhibitors with Antitumor Activity

    No full text
    The cyclin groove is an important recognition site for substrates of the cell cycle cyclin dependent kinases and provides an opportunity for highly selective inhibition of kinase activity through a non-ATP competitive mechanism. The key peptide residues of the cyclin binding motif have been studied in order to precisely define the structureactivity relationship for CDK kinase inhibition. Through this information, new insights into the interactions of peptide CDK inhibitors with key subsites of the cyclin binding groove provide for the replacement of binding determinants with more druglike functionality through REPLACE, a strategy for the iterative conversion of peptidic blockers of proteinprotein interactions into pharmaceutically relevant compounds. As a result, REPLACE is further exemplified in combining optimized peptidic sequences with effective N-terminal capping groups to generate more stable compounds possessing antitumor activity consistent with on-target inhibition of cell cycle CDKs. The compounds described here represent prototypes for a next generation of kinase therapeutics with high efficacy and kinome selectivity, thus avoiding problems observed with first generation CDK inhibitors
    corecore