22 research outputs found

    Streptozotocin-Induced Early Thermal Hyperalgesia is independent of Glycemic State of Rats: Role of Transient Receptor Potential Vanilloid 1(TRPV1) and Inflammatory mediators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Streptozotocin (STZ) is used as a common tool to induce diabetes and to study diabetes-induced complications including diabetic peripheral neuropathy (DPN). Previously, we have reported that STZ induces a direct effect on neurons through expression and function of the Transient receptor potential vanilloid 1 (TRPV1) channel in sensory neurons resulting in thermal hyperalgesia, even in non-diabetic STZ-treated mice. In the present study, we investigated the role of expression and function of TRPV1 in the central sensory nerve terminals in the spinal cord in STZ-induced hyperalgesia in rats.</p> <p>Results</p> <p>We found that a proportion of STZ-treated rats were normoglycemic but still exhibited thermal hyperalgesia and mechanical allodynia. Immunohistochemical data show that STZ treatment, irrespective of glycemic state of the animal, caused microglial activation and increased expression of TRPV1 in spinal dorsal horn. Further, there was a significant increase in the levels of pro-inflammatory mediators (IL-1β, IL-6 and TNF-α) in spinal cord tissue, irrespective of the glycemic state. Capsaicin-stimulated release of calcitonin gene related peptide (CGRP) was significantly higher in the spinal cord of STZ-treated animals. Intrathecal administration of resiniferatoxin (RTX), a potent TRPV1 agonist, significantly attenuated STZ-induced thermal hyperalgesia, but not mechanical allodynia. RTX treatment also prevented the increase in TRPV1-mediated neuropeptide release in the spinal cord tissue.</p> <p>Conclusions</p> <p>From these results, it is concluded that TRPV1 is an integral component of initiating and maintaining inflammatory thermal hyperalgesia, which can be alleviated by intrathecal administration of RTX. Further, the results suggest that enhanced expression and inflammation-induced sensitization of TRPV1 at the spinal cord may play a role in central sensitization in STZ-induced neuropathy.</p

    The effects of timing of fine needle aspiration biopsies on gene expression profiles in breast cancers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA microarray analysis has great potential to become an important clinical tool to individualize prognostication and treatment for breast cancer patients. However, with any emerging technology, there are many variables one must consider before bringing the technology to the bedside. There are already concerted efforts to standardize protocols and to improve reproducibility of DNA microarray. Our study examines one variable that is often overlooked, the timing of tissue acquisition, which may have a significant impact on the outcomes of DNA microarray analyses especially in studies that compare microarray data based on biospecimens taken <it>in vivo </it>and <it>ex vivo</it>.</p> <p>Methods</p> <p>From 16 patients, we obtained paired fine needle aspiration biopsies (FNABs) of breast cancers taken before (PRE) and after (POST) their surgeries and compared the microarray data to determine the genes that were differentially expressed between the FNABs taken at the two time points. qRT-PCR was used to validate our findings. To examine effects of longer exposure to hypoxia on gene expression, we also compared the gene expression profiles of 10 breast cancers from clinical tissue bank.</p> <p>Results</p> <p>Using hierarchical clustering analysis, 12 genes were found to be differentially expressed between the FNABs taken before and after surgical removal. Remarkably, most of the genes were linked to FOS in an early hypoxia pathway. The gene expression of FOS also increased with longer exposure to hypoxia.</p> <p>Conclusion</p> <p>Our study demonstrated that the timing of fine needle aspiration biopsies can be a confounding factor in microarray data analyses in breast cancer. We have shown that FOS-related genes, which have been implicated in early hypoxia as well as the development of breast cancers, were differentially expressed before and after surgery. Therefore, it is important that future studies take timing of tissue acquisition into account.</p

    B-type natriuretic peptide-induced delayed modulation of TRPV1 and P2X3 receptors of mouse trigeminal sensory neurons

    Get PDF
    Important pain transducers of noxious stimuli are small- and medium-diameter sensory neurons that express transient receptor vanilloid-1 (TRPV1) channels and/or adenosine triphosphate (ATP)-gated P2X3 receptors whose activity is upregulated by endogenous neuropeptides in acute and chronic pain models. Little is known about the role of endogenous modulators in restraining the expression and function of TRPV1 and P2X3 receptors. In dorsal root ganglia, evidence supports the involvement of the natriuretic peptide system in the modulation of nociceptive transmission especially via the B-type natriuretic peptide (BNP) that activates the natriuretic peptide receptor-A (NPR-A) to downregulate sensory neuron excitability. Since the role of BNP in trigeminal ganglia (TG) is unclear, we investigated the expression of BNP in mouse TG in situ or in primary cultures and its effect on P2X3 and TRPV1 receptors of patch-clamped cultured neurons. Against scant expression of BNP, almost all neurons expressed NPRA at membrane level. While BNP rapidly increased cGMP production and Akt kinase phosphorylation, there was no early change in passive neuronal properties or responses to capsaicin, \u3b1,\u3b2-meATP or GABA. Nonetheless, 24 h application of BNP depressed TRPV1 mediated currents (an effect blocked by the NPR-A antagonist anantin) without changing responses to \u3b1,\u3b2-meATP or GABA. Anantin alone decreased basal cGMP production and enhanced control \u3b1,\u3b2-meATP-evoked responses, implying constitutive regulation of P2X3 receptors by ambient BNP. These data suggest a slow modulatory action by BNP on TRPV1 and P2X3 receptors outlining the role of this peptide as a negative regulator of trigeminal sensory neuron excitability to nociceptive stimuli. \ua9 2013 Vilotti et al

    Anti-calmodulins and Tricyclic Adjuvants in Pain Therapy Block the TRPV1 Channel

    Get PDF
    Ca2+-loaded calmodulin normally inhibits multiple Ca2+-channels upon dangerous elevation of intracellular Ca2+ and protects cells from Ca2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca2+-uptake via the vanilloid inducible Ca2+-channel/inflamatory pain receptor 1 (TRPV1), which suggests that calmodulin inhibitors may block pore formation and Ca2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced 45Ca2+-uptake at µM concentrations: calmidazolium (broad range)≥trifluoperazine (narrow range)>chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially). Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca2+-uptake in intact TRPV1+ cells, and suggests an extracellular site of inhibition. TRPV1+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca2+-channels but not affecting motoneurons

    Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease

    Get PDF
    corecore