2 research outputs found

    Myocardial fibrosis in asymptomatic and symptomatic chronic severe primary mitral regurgitation and relationship to tissue characterisation and left ventricular function on cardiovascular magnetic resonance

    Get PDF
    Background: Myocardial fbrosis occurs in end-stage heart failure secondary to mitral regurgitation (MR), but it is not known whether this is present before onset of symptoms or myocardial dysfunction. This study aimed to characterise myocardial fbrosis in chronic severe primary MR on histology, compare this to tissue characterisation on cardiovascular magnetic resonance (CMR) imaging, and investigate associations with symptoms, left ventricular (LV) function, and exercise capacity. Methods: Patients with class I or IIa indications for surgery underwent CMR and cardiopulmonary exercise testing. LV biopsies were taken at surgery and the extent of fbrosis was quantifed on histology using collagen volume fraction (CVFmean) compared to autopsy controls without cardiac pathology. Results: 120 consecutive patients (64Β±13 years; 71% male) were recruited; 105 patients underwent MV repair while 15 chose conservative management. LV biopsies were obtained in 86 patients (234 biopsy samples in total). MR patients had more fbrosis compared to 8 autopsy controls (median: 14.6% [interquartile range 7.4–20.3] vs. 3.3% [2.6–6.1], P<0.001); this diference persisted in the asymptomatic patients (CVFmean 13.6% [6.3–18.8], P<0.001), but severity of fbrosis was not signifcantly higher in NYHA II-III symptomatic MR (CVFmean 15.7% [9.9–23.1] (P=0.083). Fibrosis was patchy across biopsy sites (intraclass correlation 0.23, 95% CI 0.08–0.39, P=0.001). No signifcant relationships were identifed between CVFmean and CMR tissue characterisation [native T1, extracellular volume (ECV) or late gadolinium enhancement] or measures of LV function [LV ejection fraction (LVEF), global longitudinal strain (GLS)]. Although the range of ECV was small (27.3Β±3.2%), ECV correlated with multiple measures of LV function (LVEF: Rho=βˆ’0.22, P=0.029, GLS: Rho=0.29, P=0.003), as well as NTproBNP (Rho=0.54, P<0.001) and exercise capacity (%PredVO2max: R=βˆ’0.22, P=0.030). Conclusions: Patients with chronic primary MR have increased fbrosis before the onset of symptoms. Due to the patchy nature of fbrosis, CMR derived ECV may be a better marker of global myocardial status. Clinical trial registration Mitral FINDER study; Clinical Trials NCT02355418, Registered 4 February 2015, https://clinicaltr ials.gov/ct2/show/NCT0235541

    Myocardial fibrosis in asymptomatic and symptomatic chronic severe primary mitral regurgitation and relationship to tissue characterisation and left ventricular function on cardiovascular magnetic resonance

    No full text
    Background: Myocardial fbrosis occurs in end-stage heart failure secondary to mitral regurgitation (MR), but it is not known whether this is present before onset of symptoms or myocardial dysfunction. This study aimed to characterise myocardial fbrosis in chronic severe primary MR on histology, compare this to tissue characterisation on cardiovascular magnetic resonance (CMR) imaging, and investigate associations with symptoms, left ventricular (LV) function, and exercise capacity. Methods: Patients with class I or IIa indications for surgery underwent CMR and cardiopulmonary exercise testing. LV biopsies were taken at surgery and the extent of fbrosis was quantifed on histology using collagen volume fraction (CVFmean) compared to autopsy controls without cardiac pathology. Results: 120 consecutive patients (64Β±13 years; 71% male) were recruited; 105 patients underwent MV repair while 15 chose conservative management. LV biopsies were obtained in 86 patients (234 biopsy samples in total). MR patients had more fbrosis compared to 8 autopsy controls (median: 14.6% [interquartile range 7.4–20.3] vs. 3.3% [2.6–6.1], P<0.001); this diference persisted in the asymptomatic patients (CVFmean 13.6% [6.3–18.8], P<0.001), but severity of fbrosis was not signifcantly higher in NYHA II-III symptomatic MR (CVFmean 15.7% [9.9–23.1] (P=0.083). Fibrosis was patchy across biopsy sites (intraclass correlation 0.23, 95% CI 0.08–0.39, P=0.001). No signifcant relationships were identifed between CVFmean and CMR tissue characterisation [native T1, extracellular volume (ECV) or late gadolinium enhancement] or measures of LV function [LV ejection fraction (LVEF), global longitudinal strain (GLS)]. Although the range of ECV was small (27.3Β±3.2%), ECV correlated with multiple measures of LV function (LVEF: Rho=βˆ’0.22, P=0.029, GLS: Rho=0.29, P=0.003), as well as NTproBNP (Rho=0.54, P<0.001) and exercise capacity (%PredVO2max: R=βˆ’0.22, P=0.030). Conclusions: Patients with chronic primary MR have increased fbrosis before the onset of symptoms. Due to the patchy nature of fbrosis, CMR derived ECV may be a better marker of global myocardial status. Clinical trial registration Mitral FINDER study; Clinical Trials NCT02355418, Registered 4 February 2015, https://clinicaltr ials.gov/ct2/show/NCT0235541
    corecore