11 research outputs found

    Graphene oxide nanopaint

    No full text
    Nanostructured materials are receiving growing interest in the development of a number of commercial products. In this study, we have developed a multifunctional graphene oxide (GO) nanopaint by incorporating GO sheets in an alkyd resin with suitable non-toxic additives using ball milling. The drying mechanism of the GO nanopaint has been discussed. Intermolecular cross-linking between GO and the lipid chains in the alkyd resin was studied by Fourier transform infra red spectra, Raman spectra, and X-ray photoelectron spectra, respectively. The prepared GO nanopaint exhibited good corrosion-resistant behavior in both acidic and high-salt-content solutions as examined by the immersion and electrochemical corrosion tests. The GO nanopaint coating possesses a corrosion protection efficiency of about 76% in salt water as estimated from the linear polarization studies. The antibacterial property of the GO nanopaint coated surface was studied against three bacterial strains (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) and the results showed that GO nanopaint inhibited the bacterial growth on its surface. The in situ biofouling tests demonstrated the inhibition of fouling on the GO nanopaint surface.close5

    Plasma levels of BAFF and APRIL are elevated in patients with asthma in Saudi Arabia

    No full text
    B-cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) are members of the tumor necrosis factor superfamily of cytokines and can induce B cell activation, differentiation, and antibody production via interaction with their receptors, including transmembrane activator, calcium modulator, and cyclophilin ligand interactor (TACI), B-cell maturation antigen (BCMA), and B-cell activating factor receptor (BAFF-R). Herein, we assessed the plasma protein levels of BAFF and APRIL in patients with asthma to determine whether their expression is correlated with total IgE production and examined the surface expression of BAFF/APRIL receptors on B cells. Blood samples were collected from 47 patients with controlled asthma symptoms and 20 healthy normal controls, and plasma levels of APRIL, BAFF, and total IgE protein were quantified by corresponding ELISA assays. Furthermore, lymphocytes were isolated and B cells were analyzed for the presence of BAFF-R, BCMA, and TACI receptors using flow cytometry. Our results showed that IgE, BAFF, and APRIL plasma levels were markedly increased in patients with asthma compared with healthy controls. Moreover, expression of BAFF-R and BCMA, but not that of TACI, was significantly increased in patients with asthma compared with healthy controls. Overall, the findings suggest BAFF and APRIL as key mediators of asthma, and determination of their plasma levels may be useful in monitoring asthma symptoms and treatment response

    Proteomics-based identification of cancer-associated proteins in chronic lymphocytic leukaemia

    Get PDF
    Background: Chronic lymphocytic leukaemia (CLL) is a neoplasm of B-cells characterized by variable prognosis. Exploring the proteome of CLL cells may provide insights into the disease. Therefore, eleven proteomics experiments were conducted on eleven primary CLL samples. Results: We reported a CLL proteome consisting of 919 proteins (false discovery rate (FDR) ≀ 1%) whose identification was based on the sequencing of two or more distinct peptides (FDR of peptide sequencing ≀ 1%). Mass spectrometry-based protein identification was validated for four different proteins using Western blotting and specific antibodies in different CLL samples. Small sizes of nucleolin (~57 kDa and ~68 kDa) showed a potential association with good prognosis CLL cells (n = 8, p < 0.01). Compared with normal B-cells, CLL cells over-expressed thyroid hormone receptor-associated protein 3 (THRAP3; n = 9; p = 0.00007), which is implicated in cell proliferation; and heterochromatin protein 1-binding protein 3 (HP1BP3; n = 10; p = 0.0002), which promotes cell survival and tumourogenesis. A smaller form of HP1BP3, which may correspond to HP1BP3 isoform-2, was specifically identified in normal B-cells (n = 10; p = 0.0001). HP1BP3 and THRAP3 predicted poor prognosis of CLL (p ≀ 0.05). Consistently, THRAP3 and HP1BP3 were found to be associated with cancer-related pathways (p ≀ 0.05). Conclusions: Our findings add to the known proteome of CLL and confirm the prognostic importance of two novel cancer-associated proteins in this disease.How to cite: Alsagaby SA, Brennan P, Brewis IA, et al. Proteomics-based identification of cancer-associated proteins in chronic lymphocytic leukaemia. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.04.00
    corecore