4 research outputs found

    Enzymatic and spectroscopic properties of a thermostable [NiFe]‑hydrogenase performing H2-driven NAD+-reduction in the presence of O2

    Get PDF
    Biocatalysts that mediate the H2-dependent reduction of NAD+ to NADH are attractive from both a fundamental and applied perspective. Here we present the first biochemical and spectroscopic characterization of an NAD+-reducing [NiFe]‑hydrogenase that sustains catalytic activity at high temperatures and in the presence of O2, which usually acts as an inhibitor. We isolated and sequenced the four structural genes, hoxFUYH, encoding the soluble NAD+-reducing [NiFe]‑hydrogenase (SH) from the thermophilic betaproteobacterium, Hydrogenophilus thermoluteolus TH-1T (Ht). The HtSH was recombinantly overproduced in a hydrogenase-free mutant of the well-studied, H2-oxidizing betaproteobacterium Ralstonia eutropha H16 (Re). The enzyme was purified and characterized with various biochemical and spectroscopic techniques. Highest H2-mediated NAD+ reduction activity was observed at 80 °C and pH 6.5, and catalytic activity was found to be sustained at low O2 concentrations. Infrared spectroscopic analyses revealed a spectral pattern for as-isolated HtSH that is remarkably different from those of the closely related ReSH and other [NiFe]‑hydrogenases. This indicates an unusual configuration of the oxidized catalytic center in HtSH. Complementary electron paramagnetic resonance spectroscopic analyses revealed spectral signatures similar to related NAD+-reducing [NiFe]‑hydrogenases. This study lays the groundwork for structural and functional analyses of the HtSH as well as application of this enzyme for H2-driven cofactor recycling under oxic conditions at elevated temperatures

    Structural Analysis of the Ribosome-associated Complex (RAC) Reveals an Unusual Hsp70/Hsp40 Interaction

    No full text
    Yeast Zuotin and Ssz are members of the conserved Hsp40 and Hsp70 chaperone families, respectively, but compared with canonical homologs, they atypically form a stable heterodimer termed ribosome-associated complex (RAC). RAC acts as co-chaperone for another Hsp70 to assist de novo protein folding. In this study, we identified the molecular basis for the unusual Hsp70/Hsp40 pairing using amide hydrogen exchange (HX) coupled with mass spectrometry and mutational analysis. Association of Ssz with Zuotin strongly decreased the conformational dynamics mainly in the C-terminal domain of Ssz, whereas Zuotin acquired strong conformational stabilization in its N-terminal segment. Deletion of the highly flexible N terminus of Zuotin abolished stable association with Ssz in vitro and caused a phenotype resembling the loss of Ssz function in vivo. Thus, the C-terminal domain of Ssz, the N-terminal extension of Zuotin, and their mutual stabilization are the major structural determinants for RAC assembly. We furthermore found dynamic changes in the J-domain of Zuotin upon complex formation that might be crucial for RAC co-chaperone function. Taken together, we present a novel mechanism for converting Zuotin and Ssz chaperones into a functionally active dimer

    Dihydrogen-driven NADPH recycling in imine reduction and P450-catalyzed oxidations mediated by an engineered O2-tolerant hydrogenase

    No full text
    The O2-tolerant NAD+-reducing hydrogenase (SH) from Ralstonia eutropha (Cupriavidus necator) has already been applied in vitro and in vivo for H2-driven NADH recycling in coupled enzymatic reactions with various NADH-dependent oxidoreductases. To expand the scope for application in NADPH-dependent biocatalysis, we introduced changes in the NAD+-binding pocket of the enzyme by rational mutagenesis, and generated a variant with significantly higher affinity for NADP+ than for the natural substrate NAD+, while retaining native O2-tolerance. The applicability of the SH variant in H2-driven NADPH supply was demonstrated by the full conversion of 2-methyl-1-pyrroline into a single enantiomer of 2-methylpyrrolidine catalysed by a stereoselective imine reductase. In an even more challenging reaction, the SH supported a cytochrome P450 monooxygenase for the oxidation of octane under safe H2/O2 mixtures. Thus, the re-designed SH represents a versatile platform for atom-efficient, H2-driven cofactor recycling in biotransformations involving NADPH-dependent oxidoreductases.DFG, 390540038, EXC 2008: Unifying Systems in Catalysis "UniSysCat"TU Berlin, Open-Access-Mittel – 202
    corecore