6 research outputs found

    Clinical characterization of 66 patients with congenital retinal disease due to the deep-intronic c.2991+1655A>G mutation in CEP290

    Get PDF
    PURPOSE. To describe the phenotypic spectrum of retinal disease caused by the c.2991+1655A>G mutation in CEP290 and to compare disease severity between homozygous and compound heterozygous patients. METHODS. Medical records were reviewed for best-corrected visual acuity (BCVA), age of onset, fundoscopy descriptions. Foveal outer nuclear layer (ONL) and ellipsoid zone (EZ) presence was assessed using spectral-domain optical coherence tomography (SD-OCT). Differences between compound heterozygous and homozygous patients were analyzed based on visual performance and visual development. RESULTS. A total of 66 patients were included. The majority of patients had either light perception or no light perception. In the remaining group of 14 patients, median BCVA was 20/195 Snellen (0.99 LogMAR; range 0.12–1.90) for the right eye, and 20/148 Snellen (0.87 LogMAR; range 0.22–1.90) for the left. Homozygous patients tended to be more likely to develop light perception compared to more severely affected compound heterozygous patients (P = 0.080) and are more likely to improve from no light perception to light perception (P = 0.022) before the age of 6 years. OCT data were available in 12 patients, 11 of whom had retained foveal ONL and EZ integrity up to 48 years (median 23 years) of age. CONCLUSIONS. Homozygous patients seem less severely affected compared to their compound-heterozygous peers. Improvement of visual function may occur in the early years of life, suggesting a time window for therapeutic intervention up to the approximate age of 17 years. This period may be extended by an intact foveal ONL and EZ on OCT

    Mutations in RD3 are associated with an extremely rare and severe form of early onset retinal dystrophy

    No full text
    Purpose: To identify the underlying mutation and describe the phenotype in a consanguineous Kurdish family with Leber's congenital amaurosis (LCA)/early onset severe retinal dystrophy (EOSRD). Methods: Members of the index family were followed up to 22 years by ophthalmological examinations, including best corrected visual acuity (BCVA), Goldmann visual field (GVF), two-color-threshold perimetry (2CTP) and Ganzfeld electroretinogram (ERG), fundus photographs, fundus autofluorescence (FAF), and optical coherence tomography (OCT). After excluding seven of nine known LCA/EOSRD genes in the index patient, linkage analysis was performed in the family using a microarray followed by microsatellite fine mapping and direct sequencing of candidate genes. RD3 was screened by direct sequencing of 85 independent patients with LCA/EOSRD presenting with a BCVA ≥ 1.0 LogMAR before the age of 2 years to assess the prevalence of RD3 mutations in LCA/EOSRD. Since RD3 and RetGC1 have a functional relation, study authors screened for a modifying effect of RD3 mutations in 17 independent patients with mutations in GUCY2D. Results: BCVA was severely reduced from the earliest examinations (as early as 3 months), never exceeding 1.3 LogMAR. The disease presented as cone-rod dystrophy with dystrophic changes in the macula and bone spicules in the periphery on progression. Linkage analysis narrowed the region of interest towards the LCA12 locus. Direct sequencing of RD3 revealed a homozygous nonsense mutation (c.180C > A) in all affected members tested. Screening of additional unrelated LCA/EOSRD patients revealed only polymorphisms in RD3. Conclusions: This is the second family reported so far with mutations in RD3. Mutations in RD3 are a very rare cause of LCA associated with an extremely severe form of retinal dystrophy

    Genotyping microarray (disease chip) for Leber congenital amaurosis: detection of modifier alleles.

    No full text
    Contains fulltext : 47794.pdf (publisher's version ) (Closed access)PURPOSE: Leber congenital amaurosis (LCA) is an early-onset inherited disorder of childhood blindness characterized by visual impairment noted soon after birth. Variants in at least six genes (AIPL1, CRB1, CRX, GUCY2D, RPE65, and RPGRIP1) have been associated with a diagnosis consistent with LCA or early-onset retinitis pigmentosa (RP). Genetically heterogeneous inheritance complicates the analyses of LCA cases, especially in patients without a family history of the disorder, and conventional methods are of limited value. METHODS: To overcome these limitations, arrayed primer extension (APEX) technology was used to design a genotyping microarray for early-onset, severe retinal degenerations that includes all of the >300 disease-associated variants currently described in eight genes (in addition to the six just listed, the early-onset RP genes LRAT and MERTK were added). The resultant LCA array allows simultaneous detection of all known disease-associated alleles in any patient with early-onset RP. The array was validated by screening 93 confirmed patients with LCA who had known mutations. Subsequently, 205 novel LCA cases were screened on the array, followed by segregation analyses in families, if applicable. RESULTS: The microarray was >99% effective in determining the existing genetic variation and yielded at least one disease-associated allele in approximately one third of the novel patients. More than two (expected) variants were discovered in a substantial fraction (22/300) of the patients, suggesting a modifier effect from more than one gene. In support of the latter hypothesis, the third allele segregated with a more severe disease phenotype in at least five families. CONCLUSIONS: The LCA genotyping microarray is a robust and cost-effective screening tool, representing the prototype of a disease chip for genotyping patients with a genetically heterogeneous condition. Simultaneous screening for all known LCA-associated variants in large LCA cohorts allows systematic detection and analysis of genetic variation, facilitating prospective diagnosis and ultimately predicting disease progression

    Screening of a large cohort of leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations

    No full text
    This study was undertaken to investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early-onset retinal dystrophy (EORD), and autosomal recessive retinitis pigmentosa (arRP); to delineate the ocular phenotypes; and to provide an overview of all published LCA5 variants in an online database. Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging were possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of retinitis pigmentosa (RP) were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were prescreened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of retinal pigment epithelium. One of the families with a milder phenotype harbored a homozygous splice site mutation; a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1,008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mutations. Mutations in LCA5 are a rare cause of childhood retinal dystrophy accounting for approximately 2% of disease in this cohort, and the majority of LCA5 mutations are likely null. The LCA5 protein truncating mutations are predominantly associated with LCA. However, in two families with the milder EORD, the LCA5 gene analysis revealed a homozygous splice site mutation in one and a stop mutation in combination with a missense mutation in a second family, suggesting that this milder phenotype is due to residual function of lebercilin and expanding the currently known phenotypic spectrum to include the milder early onset RP. Some patients have remaining foveal cone structures (intact IS/OS junctions on OCT imaging) and remaining visual acuities, which may bode well for upcoming treatment trials
    corecore