47 research outputs found

    Thermal Stability of Hexamethyldisiloxane (MM) for High-Temperature Organic Rankine Cycle (ORC)

    Get PDF
    The design of efficient Organic Rankine Cycle (ORC) units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM) is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units

    Comparison of Cooling System Designs for an Exhaust Heat Recovery System Using an Organic Rankine Cycle on a Heavy Duty Truck

    Get PDF
    A complex simulation model of a heavy duty truck, including an Organic Rankine Cycle (ORC) based waste heat recovery system and a vehicle cooling system, was applied to determine the system fuel economy potential in a typical drive cycle. Measures to increase the system performance were investigated and a comparison between two different cooling system designs was derived. The base design, which was realized on a Mercedes-Benz Actros vehicle revealed a fuel efficiency benefit of 2.6%, while a more complicated design would generate 3.1%. Furthermore, fully transient simulation results were performed and are compared to steady state simulation results. It is shown that steady state simulation can produce comparable results if averaged road data are used as boundary conditions

    Optimal power tracking for autonomous demand side management of electric vehicles

    Get PDF
    Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.publishedVersio

    Experimental analysis of the humidification of air in bubble columns for thermal water treatment systems

    No full text
    The humidification-dehumidification process (HDH) for desalination is a promising technology to address water scarcity issues in rural regions. However, a low humidifier efficiency is a weakness of the process. Bubble column humidifiers (BCH) are promising for HDH, as they provide enhanced heat and mass transfer and have low maintenance requirements. Previous studies of HDH-systems with BCHs draw different conclusions regarding the impact of superficial air velocity and liquid height on the humidification. Furthermore, the impact of flow characteristics has never been investigated systematically at all. In this study, an optimized BCH test setup that allows for optical analysis of the humidifier is used and evaluated. Our test setup is validated, since the influence of water temperature on the humidification, which is exponential, is reproduced. Measurements with seawater show that the normalised system productivity is increased by about 56 % with an increase in superficial air velocity from 0.5 to 5 cm/s. Furthermore, the system productivity is increased by around 29 % with an increase in liquid height from 60 to 378 mm. While the impact of superficial air velocity can be traced back to temperature changes at the humidifier and dehumidifier outlets, the impact of liquid height is shown to be caused by a smaller heat loss surface in the humidifier with an increase in liquid height. For the impact of sieve plate orifice diameter, a clear influence on the humidification is not apparent, this parameter needs to be investigated further. Finally, our new test setup allows for analysing the humidification of air (1) in a systematic way, (2) in relevant measurement ranges and (3) in comparison with optical analyses of the flow characteristics
    corecore