48 research outputs found

    Cardiac mitochondrial function depends on BUD23 mediated ribosome programming.

    Get PDF
    Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function

    EuroPhenome: a repository for high-throughput mouse phenotyping data.

    Get PDF
    The broad aim of biomedical science in the postgenomic era is to link genomic and phenotype information to allow deeper understanding of the processes leading from genomic changes to altered phenotype and disease. The EuroPhenome project (http://www.EuroPhenome.org) is a comprehensive resource for raw and annotated high-throughput phenotyping data arising from projects such as EUMODIC. EUMODIC is gathering data from the EMPReSSslim pipeline (http://www.empress.har.mrc.ac.uk/) which is performed on inbred mouse strains and knock-out lines arising from the EUCOMM project. The EuroPhenome interface allows the user to access the data via the phenotype or genotype. It also allows the user to access the data in a variety of ways, including graphical display, statistical analysis and access to the raw data via web services. The raw phenotyping data captured in EuroPhenome is annotated by an annotation pipeline which automatically identifies statistically different mutants from the appropriate baseline and assigns ontology terms for that specific test. Mutant phenotypes can be quickly identified using two EuroPhenome tools: PhenoMap, a graphical representation of statistically relevant phenotypes, and mining for a mutant using ontology terms. To assist with data definition and cross-database comparisons, phenotype data is annotated using combinations of terms from biological ontologies

    Stress-Activated Kinase MKK7 Governs Epigenetics of Cardiac Repolarization for Arrhythmia Prevention

    Get PDF
    BACKGROUND: Ventricular arrhythmia is a leading cause of cardiac mortality. Most antiarrhythmics present paradoxical proarrhythmic side effects, culminating in a greater risk of sudden death. METHODS: We describe a new regulatory mechanism linking mitogen-activated kinase kinase-7 deficiency with increased arrhythmia vulnerability in hypertrophied and failing hearts using mouse models harboring mitogen-activated kinase kinase-7 knockout or overexpression. The human relevance of this arrhythmogenic mechanism is evaluated in human-induced pluripotent stem cell-derived cardiomyocytes. Therapeutic potentials by targeting this mechanism are explored in the mouse models and human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: Mechanistically, hypertrophic stress dampens expression and phosphorylation of mitogen-activated kinase kinase-7. Such mitogen-activated kinase kinase-7 deficiency leaves histone deacetylase-2 unphosphorylated and filamin-A accumulated in the nucleus to form a complex with Kruppel-like factor-4. This complex leads to Kruppel-like factor-4 disassociation from the promoter regions of multiple key potassium channel genes (Kv4.2, KChIP2, Kv1.5, ERG1, and Kir6.2) and reduction of their transcript levels. Consequent repolarization delays result in ventricular arrhythmias. Therapeutically, targeting the repressive function of the Kruppel-like factor-4/histone deacetylase-2/filamin-A complex with the histone deacetylase-2 inhibitor valproic acid restores K+ channel expression and alleviates ventricular arrhythmias in pathologically remodeled hearts. CONCLUSIONS: Our findings unveil this new gene regulatory avenue as a new antiarrhythmic target where repurposing of the antiepileptic drug valproic acid as an antiarrhythmic is supported.British Heart Foundation [PG/09/052/27833, PG/14/71/31063, PG/12/76/29852, FS/15/16/31477]; Medical Research Council [G1002082, MC_PC_13070]; American Heart Association National Scientist Development Grants [12SDG12070077]; National Basic Research Program of China [2012CB518000]SCI(E)ARTICLE7683-69913

    YIA2 PMCA1 Deletion Leads to Increased Blood Pressure and Cardiac Hypertrophy.

    Get PDF
    A novel method for determining the sizes of iron parts in a magnetic circuit, which preserves the requirement of prescribed flux densities, has been developed. In order to take into account the nonlinear characteristics of iron, the magnetization integral equation method is used in the analysis. The effectiveness of the method is examined by applying it to the pole shape of an electromagnet. The developed software was verified by comparing calculated results with measured ones</p

    The oxoglutarate receptor 1 (OXGR1) modulates pressure overload-induced cardiac hypertrophy in mice

    Get PDF
    The G-protein-coupled receptors (GPCRs) family of proteins play essential roles in the heart, including in the regulation of cardiac hypertrophy. One member of this family, the oxoglutarate receptor 1 (OXGR1), may have a crucial role in the heart because it acts as a receptor for α-ketoglutarate, a metabolite that is elevated in heart failure patients. OXGR1 is expressed in the heart but its precise function during cardiac pathophysiological process is unknown. Here we used both in vivo and in vitro approaches to investigate the role of OXGR1 in cardiac hypertrophy. Genetic ablation of Oxgr1 in mice (OXGR1−/−) resulted in a significant increase in hypertrophy following transverse aortic constriction (TAC). This was accompanied by reduction in contractile function as indicated by cardiac fractional shortening and ejection fraction. Conversely, adenoviral mediated overexpression of OXGR1 in neonatal rat cardiomyocytes significantly reduced phenylephrine-induced cardiomyocyte hypertrophy, a result that was consistent with the in vivo data. Using a combination of yeast two hybrid screening and phospho-antibody array analysis we identified novel interacting partner and downstream signalling pathway that might be regulated by the OXGR1. First, we found that OXGR1 forms a molecular complex with the COP9 signalosome complex subunit 5 (CSN5). Secondly, we observed that the STAT3 signalling pathway was upregulated in OXGR1−/− hearts. Since CSN5 interacts with TYK2, a major upstream regulator of STAT3, OXGR1 might regulate the pro-hypertrophic STAT3 pathway via interaction with the CSN5-TYK2 complex. In conclusion, our study has identified OXGR1 as a novel regulator of pathological hypertrophy via the regulation of the STAT3. Identification of molecules that can specifically activate or inhibit this receptor may be very useful in the development of novel therapeutic approach for pathological cardiac hypertrophy
    corecore