55 research outputs found

    Increased Level of Angiopoietin Like Proteins 4 and 8 in People With Sleep Apnea

    Get PDF
    Objective: Obstructive sleep apnea (OSA) is a sleep disorder caused by the complete or partial obstruction of the upper airways. The worldwide prevalence of OSA is increasing due to its close association with obesity epidemic and multiple health complications, such as hypertension, cardiovascular disease, and Type 2 diabetes. Angiopoietin-like protein (ANGPTL)-4 and ANGPTL8 (betatrophin) have been suggested to play a role in the development of these diseases through their role in regulating the metabolism of plasma lipid molecules. This study was designed to evaluate ANGPTL4 and 8 levels in an OSA group and a control group to clarify the effect of OSA on ANGPTL4 and 8 levels.Methods: In total, 74 subjects were enrolled in this study, including 22 age- and body mass index (BMI)-matched controls with the Apnea Hypopnea Index (AHI) score of <5 events/h and 52 subjects with an AHI score of >5 events/h. Sleep apnea was assessed using a portable sleep test. ANGPTL4 and 8 levels were measured in plasma samples using enzyme-linked immunosorbent assay.Results: Mean AHI score (2.5 ± 1.6) in the control group was significantly lower than that in the OSA group (22.9 ± 17.9; p < 0.0001). Leptin, interleukin-(IL) 6, insulin, and HOMA-IR values were higher in the OSA group than in the control group. ANGPTL8 level was higher in the OSA group (1130.0 ± 108.61 pg/mL) than in the control group (809.39 ± 108.78 pg/mL; p = 0.041). Similarly, ANGPTL4 was higher in the OSA group (179.26 ± 12.89 ng/mL) than in the control group (142.63 ±7.99 ng/mL; p = 0.018).Conclusion: Our findings demonstrate that ANGPTL4 and 8 levels were increased in subjects with OSA, suggesting that the upregulation of these lipid metabolism regulators might play a role in lipid dysregulation observed in people with OSA

    Physical Exercise Enhanced Heat Shock Protein 60 Expression and Attenuated Inflammation in the Adipose Tissue of Human Diabetic Obese

    No full text
    Heat shock protein 60 (HSP60) is a key protein in the crosstalk between cellular stress and inflammation. However, the status of HSP60 in diabetes and obesity is unclear. In the present study, we investigated the hypothesis that HSP60 expression levels in the adipose tissue of human obese adults with and without diabetes are different and physical exercise might affect these levels. Subcutaneous adipose tissue (SAT) and blood samples were collected from obese adults with and without diabetes (n = 138 and n = 92, respectively, at baseline; n = 43 for both groups after 3 months of physical exercise). Conventional RT-PCR, immunohistochemistry, immunofluorescence, and ELISA were used to assess the expression and secretion of HSP60. Compared with obese adults without diabetes, HSP60 mRNA and protein levels were decreased in SAT in diabetic obese together with increased inflammatory marker expression and glycemic levels but lower VO2 Max. More interestingly, a 3-month physical exercise differentially affected HSP60 expression and the heat shock response but attenuated inflammation in both groups, as reflected by decreased endogenous levels of IL-6 and TNF-α. Indeed, HSP60 expression levels in SAT were significantly increased by exercise in the diabetes group, whereas they were decreased in the non-diabetes group. These results were further confirmed using immunofluorescence microscopy and anti-HSP60 antibody in SAT. Exercise had only marginal effects on HSP60 secretion and HSP60 autoantibody levels in plasma in both obese with and without diabetes. Physical exercise differentially alleviates cellular stress in obese adults with and without diabetes despite concomitant attenuation of the inflammatory response

    Increased plasma and adipose tissue levels of ANGPTL8/Betatrophin and ANGPTL4 in people with hypertension

    No full text
    Abstract Background Hypertension is a risk factor for both cardiovascular diseases (CVDs) and type 2 diabetes (T2D). Angiopoietin-like proteins (ANGPTLs), mainly ANGPTL3, ANGPTL4 and ANGPTL8, are associated with increased plasma lipid content due to their role in regulating the activity of lipoprotein lipase, a key enzyme in metabolism of the lipoprotein in circulation. Dyslipidaemia is a risk factor for hypertension development; however, the roles of ANGPTL3, ANGPTL4 and ANGPTL8 in subjects with hypertension have not yet been established. This study compared the plasma and adipose tissue levels of ANGPTL3, ANGPTL4 and ANGPTL8 in age- and body mass index-matched subjects with and without hypertension. Methods A total of 119 subjects, including 69 hypertensive and 50 non-hypertensive subjects, were enrolled. ANGPTL3, ANGPTL4 and ANGPTL8 plasma levels were measured by ELISA, whereas their levels in adipose tissue were assessed via real-time PCR. Results We found that ANGPTL4 (202.49 ± 17.44 ng/mL vs. 160.64 ± 10.36 ng/mL, p = 0.04) and ANGPTL8 levels (2310.96 ± 194.88 pg/mL vs. 1583.35 ± 138.27 pg/mL, p = 0.001) were higher in hypertensive subjects than non-hypertensive subjects. However, ANGPTL3 levels were not significantly different between the two populations. Similarly, ANGPTL4 and ANGPTL8 levels were also elevated in subjects with T2D and hypertension than in those with T2D but not hypertension. Additionally, people with highest tertiles of ANGPTL8 had higher odds of having hypertension (odd ratio [OR] = 3.8, 95% confidence interval [CI] = (1.5-9.8), p-Value = 0.005. Similar to its plasma levels, ANGPTL4 and ANGPTL8 were higher in adipose tissue. Conclusions In conclusion, our data illustrate that ANGPTL4 and ANGPTL8 levels in both plasma and adipose tissues are increased in subjects with hypertension. The elevated levels of ANGPTL4 and ANGPTL8 in hypertensive subjects highlight their potential involvement, their potential role as biomarkers for hypertension and their therapeutic value in hypertension given their roles in regulating lipid metabolism

    PR3 levels are impaired in plasma and PBMCs from Arabs with cardiovascular diseases.

    No full text
    Cardiovascular disease (CVD) risks persist in patients despite treatment. CVD susceptibility also varies with sex and ethnicity and is not entirely explained by conventional CVD risk factors. The aim of the present study was to identify novel CVD candidate markers in circulating Peripheral blood mononuclear cells (PBMCs) and plasma from Arab obese subjects with and without CVD using proteomic approaches. Human adults with confirmed CVD (n = 208) and matched non-CVD controls (n = 152) living in Kuwait were examined in the present cross-sectional study. Anthropometric and classical biochemical parameters were determined. We employed a shotgun proteomic profiling approach on PBMCs isolated from a subset of the groups (n = 4, each), and differentially expressed proteins selected between the two groups were validated at the mRNA level using RT-PCR (n = 6, each). Plasma levels of selected proteins from the proteomics profiling: Proteinase-3 (PR3), Annexin-A3 (ANX3), Defensin (DEFA1), and Matrix Metalloproteinase-9 (MMP9), were measured in the entire cohort using human enzyme-linked immunosorbent assay kits and were subsequently correlated with various clinical parameters. Out of the 1407 we identified and quantified from the proteomics profiling, 47 proteins were dysregulated with at least twofold change between the two subject groups. Among the differentially expressed proteins, 11 were confirmed at the mRNA levels. CVD influenced the levels of the shortlisted proteins (MMP9, PR3, ANX3, and DEFA1) in the PBMCs and plasma differentially. Despite the decreased levels of both protein and mRNA in PBMCs, PR3 circulating levels increased significantly in patients with CVD and were influenced by neither diabetes nor statin treatment. No significant changes were; however, observed in the DEFA1, MMP9, and ANX3 levels in plasma. Multivariate logistic regression analysis revealed that only PR3 was independently associated with CVD. Our results suggest that the dysregulation of PR3 levels in plasma and PBMCs reflects underlying residual CVD risks even in the treated population. More prospective and larger studies are required to establish the role of PR3 in CVD progression

    Association of COVID-19 Vaccines ChAdOx1-S and BNT162b2 with Circulating Levels of Coagulation Factors and Antithrombin

    No full text
    Background: Severe coronavirus disease 2019 (COVID-19) is associated with increased risk of thrombosis and thromboembolism. Exposure to COVID-19 vaccines is also associated with immune thrombotic thrombocytopenia, ischemic stroke, intracerebral haemorrhage, and cerebral venous thrombosis, and it is linked with systemic activation of coagulation. Methods: We assess the circulating levels of coagulation factors (factors XI, XII, XIII, and prothrombin) and antithrombin in individuals who completed two doses of either ChAdOx1-S or BNT162b2 COVID-19 vaccine, within the timeframe of two months, who had no previous history of COVID-19. Results: Elevated levels of factors XI, XII, XIII, prothrombin, and antithrombin were seen compared to unvaccinated controls. Levels of coagulation factors, antithrombin, and prothrombin to antithrombin ratio were higher with BNT162b2 compared to ChAdOx1-S vaccine. Conclusions: The clinical significance of such coagulation homeostasis disruption remains to be elucidated but it is worthy of global scientific follow-up effort

    Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise.

    No full text
    ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1-8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile.A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry.In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03).In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia

    ANGPTL8 level after exercise.

    No full text
    <p><b>A</b>: Level of full length form of ANGPTL8 in non-obese subjects before and after three months of exercise training. <b>B</b>: Level of C-terminal 139–198 form of ANGPTL8 in non-obese subjects before and after three months of exercise training. <b>C</b>: Level of full length form of ANGPTL8 in obese subjects before and after three months of exercise training. <b>D</b>: Level of C-terminal 139–198 form of ANGPTL8 in obese subjects before and after three months of exercise training.</p
    • …
    corecore