20 research outputs found

    INTERACTION AND PROTECTION OF ANTIMICROBIAL COMPOUNDS WITH CARBOHYDRATE-BASED COLLOIDAL SYSTEMS FOR IMPROVED FOOD SAFETY

    Get PDF
    The food processing industry has focused on using conventional methods for food preservation. However, the recurring incidence of food borne illnesses and outbreaks due to pathogenic or spoilage organisms have called for creation of novel intervention strategies. In recent years, antimicrobial compounds from natural sources are gaining significant importance in improving food safety and security. However, antimicrobials suffer from extensive degradation when applied to complex food systems due to several specific or non-specific interactions. There is an urgent need for the protection of such antimicrobials to prolong their activity in foods. One strategy of achieving the goal is by the combination with a delivery vehicle. In this work, we explored the interaction between novel carbohydrate biomaterial and model antimicrobial compounds. In addition, we studied the protection of such antimicrobials using carbohydrate based colloidal systems. In the first part, we examine the interactions between nisin and carbohydrate based materials in non-emulsion (aqueous) and emulsion systems. Phytoglycogen octenyl succinate (PG-OS), a dendrimer-like amphiphilic material was used as the model carbohydrate nanoparticle and nisin was used as the model antimicrobial peptide. Equilibrium dialysis experiments showed that PG-OS with different degree of substitution (DS) interacts with nisin in a Langmuir monolayer adsorption pattern in both non-emulsion and emulsion systems. The monolayer adsorption capacity (Qm) increased in non-emulsion system and was significantly higher in the emulsion system. At the equivalent concentration of PG-OS (5.0 mg/mL), and nisin (200 µg/mL), adsorbed nisin concentration in aqueous and emulsion systems were 22 and 157 µg/mL, respectively. The study demonstrated that DS of PG-OS can be used to control nisin adsorption in the non-emulsion system. In addition, the distribution of PG-OS at the droplet interface affects nisin adsorption in the emulsion system

    Cerebral Phaeohyphomycosis in a Patient with Neurosarcoidosis on Chronic Steroid Therapy Secondary to Recreational Marijuana Usage

    Get PDF
    Cerebral phaeohyphomycosis is often a fatal disease that typically takes a hematogenous spread after inhalation or accidental skin inoculation of pathogens. We present a patient with a history of heavy marijuana smoking while being on chronic steroid therapy for treatment of neurosarcoidosis who was found to have multiple brain abscesses from Curvularia sp. This is a ubiquitous soil-dwelling dematiaceous fungus that is generally thought to affect solely plants, but there is increasing evidence in the literature of it affecting humans and animals. We review the radiographic findings of neurosarcoidosis and cerebral phaeohyphomycosis as well as the pathophysiology of dematiaceous fungi infections

    Citelli’s Abscess Following Otitis Media, A Case Report

    No full text
    Introduction: Citelli’s abscess is an extratemporal complication of otitis media. It occurs when pus from the mastoid tip trickles down along the posterior belly of the digastric muscle to the occipital and cervical region. It is a very unusual presenting complication of chronic otitis media with no available data in the until now.   Case Report: A 10-year-old female was presented to our outpatient department with a 1 month history of hi-grade fever and headache and pain around the left half of the face. During physical examination a huge swelling present in the left temporal and occipital region was observed. The swelling crossed the midline, was tender to touch, and was fluctuant. During otological examination left sided chronic suppurative otitis media, of the attico-antral type with cholesteatoma, and a profuse foul smelling purulent discharge was observed. After complete investigation, drainage of the patient’s abscess was performed under general anesthesia. A postaural incision was administered and around 500 ml of pus drained out. Immediately after the operation, the patient showed signs of recovery. After 3 weeks of parenteral antibiotic therapy, the primary focus was debrided by performing left modified radical mastoidectomy.   Conclusion: Citelli's abscess is a rare complication of otitis media. Urgent radiology, followed by drainage of pus is performed to reduce pain and further progression of the infective process. The primary ear pathology is managed surgically after adequate treatment with intra venous antibiotics

    Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin

    No full text
    Candelilla wax (CW) is a well-known oleogelator that displays tremendous oil-structuring potential. Lecithin acts as a crystal modifier due to its potential to alter the shape and size of the fat crystals by interacting with the wax molecules. The proposed work is an attempt to understand the impact of differently sourced lecithin, such as sunflower lecithin (SFL) and soya lecithin (SYL), on the various physicochemical properties of CW and rice bran oil (RBO) oleogels. The yellowish-white appearance of all samples and other effects of lecithin on the appearance of oleogels were initially quantified by using CIELab color parameters. The microstructural visualization confirmed grainy and globular fat structures of varied size, density, packing, and brightness. Samples made by using 5 mg of SFL (Sf5) and 1 mg of SYL (Sy1) in 20 g showed bright micrographs consisting of fat structures with better packing that might have been due to the improvised crystallinity in the said samples. The FTIR spectra of the prepared samples displayed no significant differences in the molecular interactions among the samples. Additionally, the slow crystallization kinetics of Sf5 and Sy1 correlated with better crystal packing and fewer crystal defects. The DSC endotherm displayed two peaks for melting corresponding to the melting of different molecular components of CW. However, all the formulations showed a characteristic crystallization peak at ~40 °C. The structural reorganization and crystal growth due to the addition of lecithin affected its mechanical property significantly. The spreadability test among all prepared oleogels showed better spreadable properties for Sf5 and Sy1 oleogel. The inclusion of lecithin in oleogels has demonstrated an enhancement in oleogel properties that allows them to be included in various food products

    Polysaccharide-Based Nanocomposites for Food Packaging Applications

    No full text
    The article presents a review of the literature on the use of polysaccharide bionanocomposites in the context of their potential use as food packaging materials. Composites of this type consist of at least two phases, of which the outer phase is a polysaccharide, and the inner phase (dispersed phase) is an enhancing agent with a particle size of 1–100 nm in at least one dimension. The literature review was carried out using data from the Web of Science database using VosViewer, free software for scientometric analysis. Source analysis concluded that polysaccharides such as chitosan, cellulose, and starch are widely used in food packaging applications, as are reinforcing agents such as silver nanoparticles and cellulose nanostructures (e.g., cellulose nanocrystals and nanocellulose). The addition of reinforcing agents improves the thermal and mechanical stability of the polysaccharide films and nanocomposites. Here we highlighted the nanocomposites containing silver nanoparticles, which exhibited antimicrobial properties. Finally, it can be concluded that polysaccharide-based nanocomposites have sufficient properties to be tested as food packaging materials in a wide spectrum of applications

    Variations in Microstructural and Physicochemical Properties of Candelilla Wax/Rice Bran Oil–Derived Oleogels Using Sunflower Lecithin and Soya Lecithin

    No full text
    Candelilla wax (CW) is a well-known oleogelator that displays tremendous oil-structuring potential. Lecithin acts as a crystal modifier due to its potential to alter the shape and size of the fat crystals by interacting with the wax molecules. The proposed work is an attempt to understand the impact of differently sourced lecithin, such as sunflower lecithin (SFL) and soya lecithin (SYL), on the various physicochemical properties of CW and rice bran oil (RBO) oleogels. The yellowish-white appearance of all samples and other effects of lecithin on the appearance of oleogels were initially quantified by using CIELab color parameters. The microstructural visualization confirmed grainy and globular fat structures of varied size, density, packing, and brightness. Samples made by using 5 mg of SFL (Sf5) and 1 mg of SYL (Sy1) in 20 g showed bright micrographs consisting of fat structures with better packing that might have been due to the improvised crystallinity in the said samples. The FTIR spectra of the prepared samples displayed no significant differences in the molecular interactions among the samples. Additionally, the slow crystallization kinetics of Sf5 and Sy1 correlated with better crystal packing and fewer crystal defects. The DSC endotherm displayed two peaks for melting corresponding to the melting of different molecular components of CW. However, all the formulations showed a characteristic crystallization peak at ~40 °C. The structural reorganization and crystal growth due to the addition of lecithin affected its mechanical property significantly. The spreadability test among all prepared oleogels showed better spreadable properties for Sf5 and Sy1 oleogel. The inclusion of lecithin in oleogels has demonstrated an enhancement in oleogel properties that allows them to be included in various food products

    Traditional and ayurvedic foods of Indian origin

    Get PDF
    The Ayurveda contains a wealth of knowledge on health sciences. Accordingly traditional foods and their dietary guidelines are prescribed in Ayurveda. There is so much similarity in ayurvedic dietetics and traditional foods that many of the traditional health foods in India can be called ayurvedic foods. This review article introduces the concepts of ayurvedic health foods in India and describes several traditional heath foods across various regions of India. Recommended dietary guidelines according to age and health condition of the consumer, and seasonal considerations are presented for each of the traditional health foods of India. In the era of globalization of the population and international food trading, health conscious citizens around the globe will benefit from the wealth of knowledge on traditional Indian and ayurvedic health foods of Indian origin

    Biopolymer-based antimicrobial coatings for aquatic food products: A review

    No full text
    Aquatic food products, including fish and crustaceans, are some of the most consumed foods globally and are highly prone to microbial contamination. Such products have been preserved using conventional processing techniques such as freezing, cold storage, modified atmospheric packaging (MAP) and vacuum packaging. However, these techniques have been used since decades and are not cost-effective. Therefore, alternative sustainable strategies need to be explored. One viable option is the application of biopolymer-based films and coatings loaded with active antimicrobial agents (peptides and essential oil components) for the preservation of aquatic food products. Nisin is the most widely used peptide for the development of antimicrobial coatings, while eugenol, carvacrol, and cinnamaldehyde are among the most popular essential oil compounds. Findings reveal that both peptides and essential oils, when applied in combination within a coating system, demonstrate robust antimicrobial activity, delayed lipid oxidation, and retain the overall quality of the aquatic food system

    Selected Applications of Chitosan Composites

    No full text
    Chitosan is one of the emerging materials for various applications. The most intensive studies have focused on its use as a biomaterial and for biomedical, cosmetic, and packaging systems. The research on biodegradable food packaging systems over conventional non-biodegradable packaging systems has gained much importance in the last decade. The deacetylation of chitin, a polysaccharide mainly obtained from crustaceans and shrimp shells, yields chitosan. The deacetylation process of chitin leads to the generation of primary amino groups. The functional activity of chitosan is generally owed to this amino group, which imparts inherent antioxidant and antimicrobial activity to the chitosan. Further, since chitosan is a naturally derived polymer, it is biodegradable and safe for human consumption. Food-focused researchers are exploiting the properties of chitosan to develop biodegradable food packaging systems. However, the properties of packaging systems using chitosan can be improved by adding different additives or blending chitosan with other polymers. In this review, we report on the different properties of chitosan that make it suitable for food packaging applications, various methods to develop chitosan-based packaging films, and finally, the applications of chitosan in developing multifunctional food packaging materials. Here we present a short overview of the chitosan-based nanocomposites, beginning with principal properties, selected preparation techniques, and finally, selected current research

    Variations in Microstructural and Physicochemical Properties of Soy Wax/Soybean Oil-Derived Oleogels Using Soy Lecithin

    No full text
    Emerging natural-based polymers and materials progress and new technology innovations open the way for unique food products with high nutritional value development. In this regard, oleogel may be essential in replacing fatty acids from food products. In this study, we researched the effects of varied soy lecithin (SYL) concentrations on the various physicochemical characteristics of soy wax (SW)/refined soybean oil (RSO) oleogels. These oleogels had a soft texture. The microscopic analysis of the oleogels suggested that the thickness, length, and density of the wax crystals (needle-shaped) varied as the SYL content was changed. Colorimetric analysis indicated that the oleogels were slightly yellowish. FTIR spectrometry helped analyze the functional groups of the raw materials and the oleogels. All the functional groups present in the raw materials could be accounted for within the oleogels. The only exception is the hydrogen-bonding peak in SW, which was not seen in the FTIR spectrum of the oleogels. It was found that at a critical SYL content, the oleogel showed a stable and repeatable wax network structure. This can be described by the presence of the uniformly distributed fat crystal network in the sample. The DSC analysis revealed that the oleogel samples were thermo-reversible, with their melting and crystallization temperatures ~43 °C and ~22 °C, respectively. In gist, it can be concluded that the incorporation of SYL can impact the color, wax crystal network characteristics, thermal characteristics, and mechanical characteristics of the oleogels in a composition-dependent manner
    corecore