29 research outputs found

    R software package based statistical optimization of process components to simultaneously enhance the bacterial growth, laccase production and textile dye decolorization with cytotoxicity study.

    No full text
    The thermophilic bacterium, Bacillus licheniformis U1 is used for the optimization of bacterial growth (R1), laccase production (R2) and synthetic disperse blue DBR textile dye decolorization (R3) in the present study. Preliminary optimization has been performed by one variable at time (OVAT) approach using four media components viz., dye concentration, copper sulphate concentration, pH, and inoculum size. Based on OVAT result further statistical optimization of R1, R2 and R3 performed by Box-Behnken design (BBD) using response surface methodology (RSM) in R software with R Commander package. The total 29 experimental runs conducted in the experimental design study towards the construction of a quadratic model. The model indicated that dye concentration 110 ppm, copper sulphate 0.2 mM, pH 7.5 and inoculum size 6% v/v were found to be optimum to maximize the laccase production and bacterial growth. Whereas, maximum dye decolorization achieved in media containing dye concentration 110 ppm, copper sulphate 0.6 mM, pH 6 and inoculum size 6% v/v. R package predicted R2 of R1, R2 and R3 were 0.9917, 0.9831 and 0.9703 respectively; likened to Design-Expert (Stat-Ease) (DOE) predicted R2 of R1, R2, and R3 were 0.9893, 0.9822 and 0.8442 respectively. The values obtained by R software were more precise, reliable and reproducible, compared to the DOE model. The laccase production was 1.80 fold increased, and 2.24 fold enhancement in dye decolorization was achieved using optimized medium than initial experiments. Moreover, the laccase-treated sample demonstrated the less cytotoxic effect on L132 and MCF-7 cell lines compared to untreated sample using MTT assay. Higher cell viability and lower cytotoxicity observed in a laccase-treated sample suggest the impending application of bacterial laccase in the reduction of toxicity of dye to design rapid biodegradation process

    Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India

    No full text
    The data in this article contains the sequences of fungal Internal Transcribed Spacer (ITS) and 18S rRNA gene from a metagenome of Lonar soda lake, India. Sequences were amplified using fungal specific primers, which amplified the amplicon lined between the 18S and 28S rRNA genes. Data were obtained using Fungal tag-encoded FLX amplicon pyrosequencing (fTEFAP) technique and used to analyze fungal profile by the culture-independent method. Primary analysis using PlutoF 454 pipeline suggests the Lonar lake mycobiome contained the 29 different fungal species. The raw sequencing data used to perform this analysis along with FASTQ file are located in the NCBI Sequence Read Archive (SRA) under accession No. SRX889598 (http://www.ncbi.nlm.nih.gov/sra/SRX889598)

    Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India

    No full text
    A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms

    Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread

    No full text
    Abstract Background Silver nanoparticles (AgNPs) are believed to be emerging tool against various infectious diseases including multi-drug resistant (MDR) bacteria. In the present study, in vitro synthesis of AgNPs was optimized using 1:50 ratio of macerozyme (25 μg/μl) and 1 mM AgNO3 incubated at 80 °C for 8 h. AgNPs were characterized by UV–Visible spectroscopy, dynamic light scattering (DLS), scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM) and X-ray diffraction (XRD). Results Characterization studies suggest the synthesis of elliptical, stable and crystalline AgNPs with an average size of 38.26 ± 0.4 nm calculated using TEM. The XRD pattern revealed the face-centered-cubic (fcc) form of metallic silver. Good shape integrity and dispersion of AgNPs after 1 year of incubation confirmed their stability. AgNPs were exibited the antimicrobial property against ten pathogenic bacteria, three molds and one yeast. The AgNPs also revealed remarkable antimicrobial activity against three MDR strains i.e. Extended spectrum beta-lactamase positive Escherichia coli, Staphylococcus aureus (MRSA) and Teicoplanin resistant Streptococcus Pneumoniae. The AgNPs coated surgical threads (suture) were revealed the remarkble antibacterial activity against three MDR strains. This is the first report to synthesize antimicrobial elliptical AgNPs using enzymes. Conclusion The results suggest the possibilities to develop the nanoparticles coated antimicrobial medical fabric to combat against MDR infection

    Optimized medium component for validation of a model for responses R1, R2, and R3.

    No full text
    <p>Optimized medium component for validation of a model for responses R1, R2, and R3.</p

    Contour plots show the response surface effect of interaction on the growth of isolates.

    No full text
    <p>(A) X<sub>1</sub> with X<sub>2</sub>, and (B) X<sub>1</sub> with X<sub>4</sub>.</p

    Contour plots show the response surface effect of interaction on dye decolorization.

    No full text
    <p>(A) X<sub>1</sub> with X<sub>3</sub>, and (B) X<sub>2</sub> with X<sub>4</sub>.</p

    Chemical structure of disperse blue DBR.

    No full text
    <p>Chemical structure of disperse blue DBR.</p

    Bacterial tag encoded FLX titanium amplicon pyrosequencing (bTEFAP) based assessment of prokaryotic diversity in metagenome of Lonar soda lake, India

    Get PDF
    Bacterial diversity and archaeal diversity in metagenome of the Lonar soda lake sediment were assessed by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome comprised 5093 sequences with 2,531,282 bp and 53 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA218849. Metagenome sequence represented the presence of 83.1% bacterial and 10.5% archaeal origin. A total of 14 different bacteria demonstrating 57 species were recorded with dominating species like Coxiella burnetii (17%), Fibrobacter intestinalis (12%) and Candidatus Cloacamonas acidaminovorans (11%). Occurrence of two archaeal phyla representing 24 species, among them Methanosaeta harundinacea (35%), Methanoculleus chikugoensis (12%) and Methanolinea tarda (11%) were dominating species. Significant presence of 11% sequences as an unclassified indicated the possibilities for unknown novel prokaryotes from the metagenome

    Sensitivity analysis of response.

    No full text
    <p>(A) For R1, (B) For R2, and (C) For R3.</p
    corecore