16 research outputs found

    Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus: Analysis of the calcineurin complex in Aspergillus fumigatus

    Get PDF
    Calcineurin, a heterodimer composed of the catalytic (CnaA) and regulatory (CnaB) subunits, plays key roles in growth, virulence, and stress responses of fungi. To investigate the contribution of CnaA and CnaB to hyphal growth and septation, ΔcnaB and ΔcnaA ΔcnaB strains of A. fumigatus were constructed. CnaA co-localizes to the contractile actin ring early during septation and remains at the center of the mature septum. While CnaB's septal localization is CnaA-dependent, CnaA's septal localization is CnaB-independent but CnaB is required for CnaA's function at the septum. Catalytic null mutations in CnaA caused stunted growth despite septal localization of the calcineurin complex, indicating the requirement of calcineurin activity at the septum. Compared to the ΔcnaA and ΔcnaB strains, the ΔcnaA ΔcnaB strain displayed more defective growth and aberrant septation. While three Ca2+-binding motifs in CnaB were sufficient for its association with CnaA at the septum, the amino-terminal arginine-rich domains (16-RRRR-19 and 44-RLRKR-48) are dispensable for septal localization, yet required for complete functionality. Mutation of the 51-KLDK-54 motif in CnaB causes its mislocalization from the septum to the nucleus, suggesting it is a nuclear export signal sequence. These findings confirm a cooperative role for calcineurin complex in regulating hyphal growth and septation

    Analysis of Expressed Sequence Tags from the Fungus Aspergillus oryzae Cultured Under Different Conditions

    Get PDF
    We performed random sequencing of cDNAs from nine biologically or industrially important cultures of the industrially valuable fungus Aspergillus oryzae to obtain expressed sequence tags (ESTs). Consequently, 21 446 raw ESTs were accumulated and subsequently assembled to 7589 non-redundant consensus sequences (contigs). Among all contigs, 5491 (72.4%) were derived from only a particular culture. These included 4735 (62.4%) singletons, i.e. lone ESTs overlapping with no others. These data showed that consideration of culture grown under various conditions as cDNA sources enabled efficient collection of ESTs. BLAST searches against the public databases showed that 2953 (38.9%) of the EST contigs showed significant similarities to deposited sequences with known functions, 793 (10.5%) were similar to hypothetical proteins, and the remaining 3843 (50.6%) showed no significant similarity to sequences in the databases. Culture-specific contigs were extracted on the basis of the EST frequency normalized by the total number for each culture condition. In addition, contig sequences were compared with sequence sets in eukaryotic orthologous groups (KOGs), and classified into the KOG functional categories

    Identification and mutational analyses of phosphorylation sites of the calcineurin-binding protein CbpA and the identification of domains required for calcineurin binding in Aspergillus fumigatus

    No full text
    Calcineurin is a key protein phosphatase required for hyphal growth and virulence in Aspergillus fumigatus, making it an attractive antifungal target. However, currently available calcineurin inhibitors, FK506 and cyclosporine A, are immunosuppressive, limiting usage in the treatment of patients with invasive aspergillosis. Therefore, the identification of endogenous inhibitors of calcineurin belonging to the calcipressin family is an important parallel strategy. We previously identified the gene cbpA as the A. fumigatus calcipressin member and showed its involvement in hyphal growth and calcium homeostasis. However, the mechanism of its activation/inhibition through phosphorylation and its interaction with calcineurin remains unknown. Here we show that A. fumigatus CbpA is phosphorylated at three distinct domains, including the conserved SP repeat motif (phosphorylated domain-I; PD-I), a filamentous fungal-specific domain (PD-II), and the C-terminal CIC motif (Calcipressin Inhibitor of Calcineurin; PD-III). While mutation of three phosphorylated residues (Ser208, Ser217, Ser223) in the PD-II did not affect CbpA function in vivo, mutation of the two phosphorylated serines (Ser156, Ser160) in the SP repeat motif caused reduced hyphal growth and sensitivity to oxidative stress. Mutational analysis in the key domains in calcineurin A (CnaA) and proteomic interaction studies confirmed the requirement of PxIxIT motif-binding residues (352-NIR-354) and the calcineurin B (CnaB)-binding helix residue (V371) for the binding of CbpA to CnaA. Additionally, while the calmodulin-binding residues (442-RVF-444) did not affect CbpA binding to CnaA, three mutations (T359P, H361L, and L365S) clustered between the CnaA catalytic and the CnaB-binding helix were also required for CbpA binding. This is the first study to analyze the phosphorylation status of calcipressin in filamentous fungi and identify the domains required for binding to calcineurin

    Calcineurin Localizes to the Hyphal Septum in Aspergillus fumigatus: Implications for Septum Formation and Conidiophore Development▿ †

    No full text
    A functional calcineurin A fusion to enhanced green fluorescent protein (EGFP), CnaA-EGFP, was expressed in the Aspergillus fumigatus ΔcnaA mutant. CnaA-EGFP localized in actively growing hyphal tips, at the septa, and at junctions between the vesicle and phialides in an actin-dependent manner. This is the first study to implicate calcineurin in septum formation and conidiophore development of a filamentous fungus

    Differential Effects of Inhibiting Chitin and 1,3-β-d-Glucan Synthesis in Ras and Calcineurin Mutants of Aspergillus fumigatus▿

    No full text
    Aspergillus fumigatus must be able to properly form hyphae and maintain cell wall integrity in order to establish invasive disease. Ras proteins and calcineurin each have been implicated as having roles in these processes. Here, we further delineate the roles of calcineurin and Ras activity in cell wall biosynthesis and hyphal morphology using genetic and pharmacologic tools. Strains deleted for three genes encoding proteins of these pathways, rasA (the Ras protein), cnaA (calcineurin), or crzA (the zinc finger transcription factor downstream of calcineurin), all displayed decreased cell wall 1,3-β-d-glucan content. Echinocandin treatment further decreased the levels of 1,3-β-d-glucan for all strains tested yet also partially corrected the hyphal growth defect of the ΔrasA strain. The inhibition of glucan synthesis caused an increase in chitin content for wild-type, dominant-active rasA, and ΔrasA strains. However, this important compensatory response was diminished in the calcineurin pathway mutants (ΔcnaA and ΔcrzA). Taken together, our data suggest that the Ras and calcineurin pathways act in parallel to regulate cell wall formation and hyphal growth. Additionally, the calcineurin pathway elements cnaA and crzA play a major role in proper chitin and glucan incorporation into the A. fumigatus cell wall

    Aspergillus fumigatus Calcipressin CbpA Is Involved in Hyphal Growth and Calcium Homeostasis▿ †

    No full text
    Calcineurin is a conserved protein phosphatase that plays a critical role in Ca2+ signaling and stress responses. Previously, a new class of conserved calcineurin-binding proteins, the calcipressins, was identified. However, the role of these proteins remains controversial, and both inhibitory and stimulatory effects on calcineurin were observed. In this study, we investigate the role of CbpA, the Aspergillus fumigatus member of the calcipressin family, and report that deletion of the cbpA gene resulted in reduced hyphal growth and limited attenuated virulence. Interestingly, under high-calcium-level conditions, the ΔcbpA strain displayed improved Ca2+ tolerance compared to the wild-type strain and revealed increased expression of vcxA, chsA, and cnaA, which encode the vacuolar Ca2+/H+ exchanger VcxA, chitin synthase A, and the calcineurin catalytic subunit CnaA, respectively. The increased transcript levels of these three genes were reversed in the presence of the calcineurin inhibitor FK506, indicating a calcineurin-dependent mechanism. Overexpression of cbpA resulted in decreased transcription of vcxA, chsA, and cnaA, associated with wild-type sensitivity to Ca2+. Taken together, our study highlights the importance of CbpA in the regulation of hyphal growth and calcium adaptation of A. fumigatus and provides evidence that CbpA may serve as a feedback inhibitor in some aspects of calcineurin functions

    Phosphorylation of the Aspergillus oryzae Woronin body protein, AoHex1, by protein kinase C: evidence for its role in the multimerization and proper localization of the Woronin body protein

    No full text
    Woronin body, a specialized peroxisome, is a unique organelle involved in septal pore sealing and protecting filamentous fungus from excessive cytoplasmic bleeding. We recently characterized the Aohex1 gene encoding the major protein of the Woronin body in the fungus Aspergillus oryzae. Although three-dimensional microscopy revealed plugging of the septal pore by Woronin body, the mechanism of its formation remains unknown. We report here a reduction in the oligomeric forms (dimeric and tetrameric) of AoHex1 upon λ-phosphatase treatment, which indicated that AoHex1 phosphorylation in vivo facilitates its oligomerization. Concomitant with the presence of a highly conserved predicted PKC (protein kinase C)-phosphorylatable site (Ser151), the recombinant AoHex1 was phosphorylated by PKC in vitro and the administration of the PKC inhibitors, bisindolylmaleimide I and chelerythrine, resulted in the reduction of the oligomeric forms of AoHex1 in vivo. While spherical dot-like Woronin bodies were visualized by expressing the dsred2–Aohex1 and egfp (enhanced green fluorescent protein)–Aohex1 constructs in A. oryzae, treatment with the PKC inhibitors caused an abnormal localization to ring-like structures. In addition to the reduced phosphorylation of the mutagenized recombinant AoHex1[S151A] (Ser151 to alanine substitution) by PKC in vitro, the overexpression of Aohex1[S151A] as dsred2 fusion against the wild-type background also showed reduction of the oligomeric forms of the endogenous AoHex1 and its perturbed localization to ring-like structures in vivo. In conclusion, the present study implicates the relevance of PKC-dependent phosphorylation of the Woronin body protein, AoHex1, for its multimerization and proper localization
    corecore