13 research outputs found

    Spatial epidemiology of acute respiratory infections in children under 5 years and associated risk factors in India: District-level analysis of health, household, and environmental datasets

    Get PDF
    BackgroundIn India, acute respiratory infections (ARIs) are a leading cause of mortality in children under 5 years. Mapping the hotspots of ARIs and the associated risk factors can help understand their association at the district level across India.MethodsData on ARIs in children under 5 years and household variables (unclean fuel, improved sanitation, mean maternal BMI, mean household size, mean number of children, median months of breastfeeding the children, percentage of poor households, diarrhea in children, low birth weight, tobacco use, and immunization status of children) were obtained from the National Family Health Survey-4. Surface and ground-monitored PM2.5 and PM10 datasets were collected from the Global Estimates and National Ambient Air Quality Monitoring Programme. Population density and illiteracy data were extracted from the Census of India. The geographic information system was used for mapping, and ARI hotspots were identified using the Getis-Ord Gi* spatial statistic. The quasi-Poisson regression model was used to estimate the association between ARI and household, children, maternal, environmental, and demographic factors.ResultsAcute respiratory infections hotspots were predominantly seen in the north Indian states/UTs of Uttar Pradesh, Bihar, Delhi, Haryana, Punjab, and Chandigarh, and also in the border districts of Uttarakhand, Himachal Pradesh, and Jammu and Kashmir. There is a substantial overlap among PM2.5, PM10, population density, tobacco smoking, and unclean fuel use with hotspots of ARI. The quasi-Poisson regression analysis showed that PM2.5, illiteracy levels, diarrhea in children, and maternal body mass index were associated with ARI.ConclusionTo decrease ARI in children, urgent interventions are required to reduce the levels of PM2.5 and PM10 (major environmental pollutants) in the hotspot districts. Furthermore, improving sanitation, literacy levels, using clean cooking fuel, and curbing indoor smoking may minimize the risk of ARI in children

    Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    Get PDF
    Tetrahymena ATP synthase, an evolutionarily divergent protein complex, has a very unusual structure and protein composition including a unique Fo subunit a and at least 13 proteins with no orthologs outside of the ciliate lineage

    Diverse target gene modifications in Plasmodium falciparum using Bxb1 integrase and an intronic attB

    No full text
    Abstract Genetic manipulation of the human malaria parasite Plasmodium falciparum is needed to explore pathogen biology and evaluate antimalarial targets. It is, however, aggravated by a low transfection efficiency, a paucity of selectable markers and a biased A/T-rich genome. While various enabling technologies have been introduced over the past two decades, facile and broad-range modification of essential genes remains challenging. We recently devised a new application of the Bxb1 integrase strategy to meet this need through an intronic attB sequence within the gene of interest. Although this attB is silent and without effect on intron splicing or protein translation and function, it allows efficient gene modification with minimal risk of unwanted changes at other genomic sites. We describe the range of applications for this new method as well as specific cases where it is preferred over CRISPR-Cas9 and other technologies. The advantages and limitations of various strategies for endogenous gene editing are also discussed

    Effect of climate change and deforestation on vector borne diseases in the North-Eastern Indian State of Mizoram bordering Myanmar

    No full text
    Malaria and dengue are the two major vector-borne diseases in Mizoram. Malaria is endemic in Mizoram, and dengue was first reported only in 2012. The study was designed to study the impact of climate variables, and deforestation on the incidence of dengue and malaria in Mizoram. Temperature, rainfall, and humidity data of Mizoram in the monsoon period (May-September) from 1979 to 2013 were obtained from the National Centers for Environmental Prediction Climate Forecast System Reanalysis. Forest cover data were extracted from the Forests Survey of India Reports and satellite products of Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer missions. Vector-borne diseases data were obtained from the State Vector Borne Disease Control Program. Non-parametric tests (Mann-Kendall test and Sen's slope method) were used to estimate the long-term trends in the climate and forest cover variables. The Mann-Kendall test indicates that the minimum temperature during the monsoon period is increasing (p<0.001). The Sen's slope estimate shows an average annual 0.02 °C (0.01–0.03 at 95% CI) increase in minimum temperature, and there is an annual ~0.1 °C increase after 2007. There is a 20.45 mm increase in annual monsoon rainfall (5.90–34.37 at 95% CI), and a 0.08% (0.02–0.18 at 95% CI) increase in relative annual humidity. Forest cover data shows that there is an annual average decrease of 162 sq.km (272.81–37.53 at 95% CI, p<0.001) in the dense forest cover. Malaria transmission continues to be stable in Mizoram; compared to 2007, cases have increased in 2019. Over the study period, in the monsoon season, there was an ~0.8 °C rise in the minimum temperature, which could have facilitated the establishment of Aedes aegypti in Mizoram. Furthermore, the increase in rainfall and humidity may have also helped the biology of Ae. aegypti. Deforestation could be an important factor responsible for the consistently high number of malaria cases in Mizoram

    CLAG3 Self-Associates in Malaria Parasites and Quantitatively Determines Nutrient Uptake Channels at the Host Membrane

    No full text
    Malaria parasites increase host erythrocyte permeability to ions and nutrients via a broad-selectivity channel known as the plasmodial surface anion channel (PSAC), linked to parasite-encoded CLAG3 and two associated proteins. These proteins lack the multiple transmembrane domains typically present in channel-forming proteins, raising doubts about their precise roles. Using the virulent human Plasmodium falciparum parasite, we report that CLAG3 undergoes self-association and that this protein’s expression determines channel phenotype quantitatively. We overcame epigenetic silencing of clag3 paralogs and engineered parasites that express two CLAG3 isoforms simultaneously. Stoichiometric expression of these isoforms yielded intermediate channel phenotypes, in agreement with observed trafficking of both proteins to the host membrane. Coimmunoprecipitation and surface labeling revealed formation of CLAG3 oligomers. In vitro selections applied to these transfectant lines yielded distinct mutants with correlated changes in channel activity. These findings support involvement of the identified oligomers in PSAC formation and parasite nutrient acquisition.Malaria parasites are globally important pathogens that evade host immunity by replicating within circulating erythrocytes. To facilitate intracellular growth, these parasites increase erythrocyte nutrient uptake through an unusual ion channel. The parasite CLAG3 protein is a key determinant of this channel, but its lack of homology to known ion channels has raised questions about possible mechanisms. Using a new method that allows simultaneous expression of two different CLAG3 proteins, we identify self-association of CLAG3. The two expressed isoforms faithfully traffic to and insert in the host membrane, while remaining associated with two unrelated parasite proteins. Both the channel phenotypes and molecular changes produced upon selections with a highly specific channel inhibitor are consistent with a multiprotein complex that forms the nutrient pore. These studies support direct involvement of the CLAG3 protein in channel formation and are relevant to antimalarial drug discovery projects targeting parasite nutrient acquisition

    Seroprevalence and risk factors of brucellosis in livestock in the wildlife and livestock interface area of Similipal Biosphere Reserve, India

    Get PDF
    Background and Aim: Brucellosis is an important zoonotic disease that affects fertility in farm animals. The risk factors of brucellosis have not been well studied. This study aimed to understand the seroprevalence and risk factors of brucellosis among livestock in Bangriposi block of Mayurbhanj district in Odisha, a region that borders Similipal wildlife reserve. Materials and Methods: Rose Bengal plate test (RBPT) was carried out to estimate the seroprevalence of the livestock in this region. Bivariate analysis was carried out to analyze the association between the variables and brucellosis. Binary logistic regression was performed to assess the risk factors associated with brucellosis in the livestock. Results: Based on RBPT, the seroprevalence of brucellosis among cattle and goats was estimated to be 1.1% and 11.2%, respectively. Binary logistic regression analysis indicates that study area, age, goats, animals with a history of abortion, and rearing practices were the major risk factors in this region. Conclusion: This is one of the first studies in India to shed light on risk factors of brucellosis, an important neglected disease that affects the health of animals and humans and nation's economy

    Susceptibility of wild and colonized Anopheles stephensi to Plasmodium vivax infection

    No full text
    Abstract Background As much as 80% of global Plasmodium vivax infections occur in South Asia and there is a shortage of direct studies on infectivity of P. vivax in Anopheles stephensi, the most common urban mosquito carrying human malaria. In this quest, the possible effects of laboratory colonization of mosquitoes on infectivity and development of P. vivax is of interest given that colonized mosquitoes can be genetically less divergent than the field population from which they originated. Methods Patient-derived P. vivax infected blood was fed to age-matched wild and colonized An. stephensi. Such a comparison requires coordinated availability of same-age wild and colonized mosquito populations. Here, P. vivax infection are studied in colonized An. stephensi in their 66th–86th generation and fresh field-caught An. stephensi. Wild mosquitoes were caught as larvae and pupae and allowed to develop into adult mosquitoes in the insectary. Parasite development to oocyst and sporozoite stages were assessed on days 7/8 and 12/13, respectively. Results While there were batch to batch variations in infectivity of individual patient-derived P. vivax samples, both wild and colonized An. stephensi were roughly equally susceptible to oocyst stage Plasmodium infection. At the level of sporozoite development, significantly more mosquitoes with sporozoite load of 4+ were seen in wild than in colonized populations. Conclusions Overall at the level of oocyst development, significant difference was found between the colonized and wild Anopheles stephensi in their susceptibility to P. vivax. For initial understanding of infections with local strains of P. vivax, colonized Anopheles stephensi will serve as a good model. For experiments, where high number of sporozoites are necessary, wild mosquitoes provide distinct advantage over the colonized vector populations. Understanding the molecular mechanism modulating this variability between these two populations will be prime area of focus in future studies

    Dynamics of Plasmodium vivax sporogony in wild Anopheles stephensi in a malaria-endemic region of Western India

    No full text
    Abstract Background In global efforts to track mosquito infectivity and parasite elimination, controlled mosquito-feeding experiments can help in understanding the dynamics of parasite development in vectors. Anopheles stephensi is often accepted as the major urban malaria vector that transmits Plasmodium in Goa and elsewhere in South Asia. However, much needs to be learned about the interactions of Plasmodium vivax with An. stephensi. As a component of the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA), a series of membrane-feeding experiments with wild An. stephensi and P. vivax were carried out to better understand this vector-parasite interaction. Methods Wild An. stephensi larvae and pupae were collected from curing water in construction sites in the city of Ponda, Goa, India. The larvae and pupae were reared at the MESA ICEMR insectary within the National Institute of Malaria Research (NIMR) field unit in Goa until they emerged into adult mosquitoes. Blood for membrane-feeding experiments was obtained from malaria patients at the local Goa Medical College and Hospital who volunteered for the study. Parasites were counted by Miller reticule technique and correlation between gametocytaemia/parasitaemia and successful mosquito infection was studied. Results A weak but significant correlation was found between patient blood gametocytaemia/parasitaemia and mosquito oocyst load. No correlation was observed between gametocytaemia/parasitaemia and oocyst infection rates, and between gametocyte sex ratio and oocyst load. When it came to development of the parasite in the mosquito, a strong positive correlation was observed between oocyst midgut levels and sporozoite infection rates, and between oocyst levels and salivary gland sporozoite loads. Kinetic studies showed that sporozoites appeared in the salivary gland as early as day 7, post-infection. Conclusions This is the first study in India to carry out membrane-feeding experiments with wild An. stephensi and P. vivax. A wide range of mosquito infection loads and infection rates were observed, pointing to a strong interplay between parasite, vector and human factors. Most of the present observations are in agreement with feeding experiments conducted with P. vivax elsewhere in the world
    corecore