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Background: In India, acute respiratory infections (ARIs) are a leading cause

of mortality in children under 5 years. Mapping the hotspots of ARIs and the

associated risk factors can help understand their association at the district level

across India.

Methods: Data on ARIs in children under 5 years and household variables

(unclean fuel, improved sanitation, mean maternal BMI, mean household size,

mean number of children, median months of breastfeeding the children,

percentage of poor households, diarrhea in children, low birth weight, tobacco

use, and immunization status of children) were obtained from the National

Family Health Survey-4. Surface and ground-monitored PM2.5 and PM10

datasets were collected from the Global Estimates and National Ambient Air

Quality Monitoring Programme. Population density and illiteracy data were

extracted from the Census of India. The geographic information system was

used for mapping, and ARI hotspots were identified using the Getis-Ord Gi∗

spatial statistic. The quasi-Poisson regression model was used to estimate the

association between ARI and household, children, maternal, environmental,

and demographic factors.

Results: Acute respiratory infections hotspots were predominantly seen in the

north Indian states/UTs of Uttar Pradesh, Bihar, Delhi, Haryana, Punjab, and

Chandigarh, and also in the border districts of Uttarakhand, Himachal Pradesh,

and Jammu and Kashmir. There is a substantial overlap among PM2.5, PM10,

population density, tobacco smoking, and unclean fuel use with hotspots
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of ARI. The quasi-Poisson regression analysis showed that PM2.5, illiteracy

levels, diarrhea in children, and maternal body mass index were associated

with ARI.

Conclusion: To decrease ARI in children, urgent interventions are required

to reduce the levels of PM2.5 and PM10 (major environmental pollutants) in

the hotspot districts. Furthermore, improving sanitation, literacy levels, using

clean cooking fuel, and curbing indoor smoking may minimize the risk of ARI

in children.

KEYWORDS

ARI, PM2.5 and PM10, unclean cooking fuel, Getis-Ord Gi∗ spatial statistic, NFHS-4

Introduction

Respiratory infections are one of the major causes of chronic

diseases in children worldwide, causing significant deaths in

developing countries and greatly contributing to increases in

disability-adjusted life years (1, 2). Globally, lower respiratory

infections (LRI) are a major cause of death in children under 5

years (3), and in 2015, an estimated 104.8 children per million

died of LRI (2). In India, even though there was a substantial

decrease in the deaths of children under 5 years (2.516 million

deaths in 2000 to 1.201 million deaths in 2015), the count is still

the highest in the world in this category (4). Among children

under 5 years in India, pneumonia—a major manifestation of

LRI—was the second leading cause of mortality, with 0.191

million deaths (15.9%), next to preterm birth complications

(0.33 million, 27.5%) (5).

Etiology and risk factors for respiratory tract infections

are multifactorial: solid fuel cookstove use, household tobacco

use, and agricultural crop burning are important environmental

risk factors for respiratory tract infections in children in India

(6–8). Solid fuel is a key risk factor for acute respiratory

infections (ARI) (6, 9–13), and 50% of pneumonia-related

deaths in children under 5 years are due to inhalation of

particulate matter (soot) arising from indoor air pollution

(14). When inhaled, particulate matter (PM2.5) can settle deep

in the lungs and can enter into circulation, resulting in an

increased risk of respiratory and cardiac illnesses (15). Solid fuel

burning, windblown soil, vehicular exhaust, agricultural crop

burning, and fine particulate matter (PM2.5) from construction

sites pollute air and cause respiratory diseases (16). Improved

Abbreviations: ARI, acute respiratory infection; LRI, lower respiratory

infections; PM, particulate matter; NFHS, National Family Health Survey;

DHS, Demographic and Health Survey; UT, union territory; AOD, aerosol

optical depth; GIS, geographic information system; NCT, National Capital

Region; ACRB, agricultural crop residue burning; HAP, household air

pollution; LPG, liquid petroleum gas.

sanitation and hygiene interventions have been reported to

reduce ARI in children (17, 18).

The National Family Health Survey-4 (NFHS-4) estimated

the prevalence of ARI to be 2.7% in 2015–2016 in India, which

is a ∼50% decrease from 5.6% reported in 2005–2006 by the

NFHS-3 (19). Despite a ∼50% decrease in ARI mortality of

children under 5 years (4), India has not achieved the target

of reducing child mortality by two-thirds between 1990 and

2015, as envisaged in the Millennium Development Goal 4

(20). Achieving the sustainable development goal target of

child survival (neonatal mortality of ≤12/1,000 live births and

mortality of children under 5 years of ≤25/1,000 live births) by

2030 (21) may not be possible for many states in India at the

current rate of progress (5).

As ARIs are major determinants of child mortality,

understanding their spatial distribution at the district level

across India is critical for devising targeted intervention

strategies. In this study, we have mapped the prevalence of ARI

in children under 5 years at the district level across India using

data from the NFHS-4 and the Census of India. In addition,

using spatial statistics, we have mapped the hotspots to identify

high-risk districts and states in India. In addition, the spatial

association of environmental (PM2.5 and PM10), household

(cooking fuel, sanitation, and vaccination status), and behavioral

(tobacco smoking) risk factors with ARI epidemiology in

children under 5 years at the district level across India was also

outlined. Furthermore, the statistical association of ARI and its

associated risk factors were estimated using the quasi-Poisson

regression model.

Methods

Data source

Data on ARI, unclean fuel, improved sanitation, mean

maternal BMI, mean household size, mean number of children,

medianmonths of breastfeeding the children, percentage of poor

households, percentage of children with diarrhea, percentage
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of low birth weight, percentage of people who smoke tobacco,

and immunization status of children data were obtained from

the NFHS-4, a district-level survey carried out in all Indian

districts for determining many important health indicators,

including ARI (22). The survey was carried out across India

from January 2015 to December 2016. The NFHS-4 data are

available for public use at https://dhsprogram.com/ and can

be used after obtaining authorization from the Demographic

and Health Survey (DHS) program. Data on the district-

wise population (total and children) and illiteracy data (2011)

for all 640 districts in India were collected from the Census

of India website (https://www.censusindia.gov.in/2011census/

dchb/DCHB.html) for mapping and comparative analysis. The

average concentration of PM2.5 for districts for the period

2013–2016 was collected from the Global Estimates data. The

Global Estimates of fine particulate matter concentration are

collated by combining data retrieved from aerosol optical depth

(AOD) from satellite products, GEOS-Chem chemical transport

modeling on surface PM2.5, and ground-monitored data. The

satellite products, such as NASA’s MODIS C6.1, MISR V23,

NASA’s MAI ACC6 and SeaWiFS, were used to derive AOD.

The estimates were calibrated with the global ground-based

PM2.5 observations to obtain long-term consistency for trend

assessment. The year-wise net CDF files were downloaded from

the Global Estimates V4.GL.03/V4.GL.03.NoGWR datasets

available at https://sites.wustl.edu/acag/datasets/surface-pm2-

5/. In addition to PM2.5 data, ground-monitored PM10 data

from 168 cities in India were collected from the National

Ambient Air QualityMonitoring Programme (23) for the period

2013–2016 for comparative analysis. The datasets used for

analysis are provided in Supplementary material S1.

Study measures

Outcome variable

The outcome of interest is the number of ARI cases per

100 population in each of the 640 districts in India. ARI cases

are identified based on symptoms of (a) cough accompanied

by (b) short, rapid breathing that is chest-related and/or (c)

difficult breathing that is chest-related. A child with all these

three symptoms was considered to be suffering from ARI (22).

Independent variables

The particulate matter, PM2.5 (average annual

concentrations of PM2.5 in µg/m3), was used as an

environmental variable in the analysis. The following variables

were considered household variables: (a) unclean cooking

fuel use (percentage of households using solid fuels including

coal, charcoal, wood, straw/shrub/grass, and animal dung),

(b) improved sanitation facilities (percentage of households

using non-shared toilet type with piped sewer systems), and

(c) tobacco consumption (percentage of people smoking

tobacco). Mothers’ characteristics include median months of

breastfeeding, the mean number of children, andmeanmaternal

BMI. The percentage of children with diarrhea, low birth weight,

and immunization status of children (percentage of<2-year-old

children immunized with BCG, measles, polio, and DPT) were

considered children-level variables. The demography variables

included (a) mean household size, (b) rural/urban residence

(dominant category of residence in a district), (c) illiteracy

level (percentage of illiterates to the total population), and (d)

percentage of poor households.

Data normalization and mapping

In this study, the data points of PM2.5 with 0.01◦ ×
0.01◦ resolution from each district boundary across India were

spatially averaged (all the pixel values within a district boundary)

to derive the annual PM2.5 data. To avoid temporal deviations

and compare the PM2.5 values with NFHS-4 ARI datasets,

a 4-year (2013–2016) average concentration of PM2.5 was

computed. Similarly, the 4-year values of location-specific PM10

data were averaged and compared with PM2.5 through the GIS.

All the generated datasets were prepared as spatial layers

for spatial analysis and mapped using ArcMap 10.4 software

(https://www.esri.com/en-us/arcgis/products/arcgis-desktop/

resources). We used choropleth mapping techniques for better

visualization and easy interpretation.

Hotspot analysis

Spatial autocorrelation investigates the degree to which

a phenomenon is correlated to itself in a two-dimensional

geographical surface. The evaluation of such identifiable

spatial patterns of ARI is necessary to better understand the

propagation of ARI in a geographical area. The overall clustering

of the incidence of ARI can be measured by global spatial

autocorrelation methods. For example, Moran’s I statistic tests

the null hypothesis that the spatial autocorrelation of a variable

is assumed to be zero. The variable is said to have spatial

autocorrelation if the null hypothesis is rejected (24). A family

of G statistics, developed by Getis and Ord, is more popular

and is used to study spatial interdependency. The general G

statistic (25), similar to Moran’s I statistics, measures only the

overall degree of spatial autocorrelation and results in a single

index for the entire study area. However, the global statistic is

too general, and the local patterns in spatial autocorrelation are

neutralized and will go undetected (26, 27). Local-level spatial

autocorrelation methods will focus on factors controlling the

local variation in a larger space, and the detection of such clusters

will enable us to identify hotspots without any preconceptions

about their locations (28). Getis and Ord proposed Gi and G∗
i , a
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local spatial autocorrelation statistic more suitable for detecting

significant pockets of clustering, which are often undetected

using global statistics (29).

In this study, we used district-level NFHS-4 data on the

percentage of children with ARI symptoms for detecting ARI

clusters in India. The hotspot analysis tool in ArcGIS software

was used to identify the intensity of clustering in a bin (district)

relative to its neighboring bins (districts). The hotspot analysis

was performed by determining the standardized Getis-Ord Gi∗

spatial statistic with the null hypothesis that there is no spatial

autocorrelation among the features with respect to the variable

ARI cases (in %). The analysis revealed the identification of ARI

hotspots based on Z-scores (standard deviations) and p-values

(probability). The standardized Getis-Ord Gi∗ spatial statistic

considering wii 6= 0 can be expressed as follows:

G∗
i (d) =

∑

j wij(d)xj −W∗
i x

s{
[(

nS∗1i
)

−W∗2
i

]

/(n− 1)}1/2
, all j

where W∗
i = Wi + wii; S∗1i =

∑

j w
2
ij(all j); wij is the spatial

weight between the features i and j; x and s represent the sample

mean and standard deviation, respectively; n represents the total

number of features; and Wi represents the sum of weights for a

distance d, and that can be expressed asWi =
∑

j 6=i
wij(d).

The Gi∗ statistic generates the p-value obtained from the

significance test, and that could be used to determine whether or

not to accept the null hypothesis. The standardized G (Z-score

of G) can be calculated as follows (26):

ZG =
(G− E(G))
√
V(G)

where E(G) represents the expected G and V(G) is the variance

of G. The E(G) and V(G) can be calculated as follows:

E(G) =

n
∑

i=1

n
∑

j=1
Wij(d)

n(n− 1)
, ∀j 6= i

V(G) = E(G2)− E(G)2

When the absolute value of the Z-score is large, and the p <

0.05, the null hypothesis can be rejected, that is, the districts

(or ARI values associated with the districts) exhibit statistically

significant clustering.

In this study, the local sum of ARI cases (in %) of a single

district and its neighboring districts is compared proportionally

with the sum of ARI cases (in %) of all Indian districts. We

have defined a Euclidean distance of 200 km as a spatial limit

to define the neighborhood relationships. Thus, the prevalence

of ARI in each of the districts is compared spatially with the

neighboring districts (the districts that are within 200 km radial

distance) as well as with all the 640 districts of India. As a result

of this comparison, a Z-score (standard deviation) and a p-value

(probability) are generated for each district within the context

of the neighboring districts at 95% CI. When the local sum is

quite different from the expected local sum, and that difference

is larger than expected to be from random chance, a statistically

significant Z-score (p < 0.05) is obtained (30). A high Z-score

and a small p-value for a district indicate a spatial clustering of

high values (hotspots). A low negative Z-score and a small p-

value indicate a spatial clustering of low values (cold spots). A

Z-score near zero indicates no apparent spatial clustering (31).

Statistical analysis

A quasi-Poisson regression model was used to estimate

the association between ARI (cases per 100 population) and

the independent variables (PM2.5, percentage of unclean fuel,

percentage of improved sanitation, percentage of childhood

immunization, percentage of illiteracy level, percentage of

people smoking tobacco, mean maternal BMI, mean household

size, mean number of children, median months of breastfeeding,

percentage of poor household, percentage of children with

diarrhea, percentage of low birth weight, and rural/urban

residence). The quasi-Poisson regression model was used to

account for the overdistribution in the count data. All the

independent variables were included in themultivariate analysis,

irrespective of significance in the univariate analysis. There was

no multicollinearity issue among the independent variables. The

adjusted incidence rate ratios (aIRRs) and the corresponding

95%CI are presented. A p< 0.05 was considered significant. The

statistical analysis was carried out using STATA software version

17 (StataCorp, TX, USA).

Results

Spatial pattern of ARI

The prevalence of ARI in children under 5 years in each

district was taken as an absolute percentage of the population,

as shown in Figure 1A. The average percentage of children

(under 5 years) having symptoms of ARI in India during

the study period was 2.7% (6,529 out of 238,945 surveyed

children). The district-wise ARI percentage is classified into

five classes: <1.0- very low; 1.1-2.0-low; 2.1-5.0-moderate; 5.1-

10.0-high; 10.1-20.0- very high. The class interval of 10.1–20.0

(%) represents districts that have the highest prevalence rates,

while the class interval of <1.0 shows districts with a very low

prevalence of ARI. Many districts in the northern states of India,

such as Jammu and Kashmir, Punjab, Uttarakhand, and Uttar

Pradesh, show the prevalence of ARI prevalence of more than

5%. In addition, a few districts in Bihar, West Bengal, Assam,

Meghalaya, Jharkhand, Odisha, and Madhya Pradesh report a

prevalence of ARI of>5%. In the districts surrounding themajor

cities of Delhi, Kolkata, Mumbai, Bhopal, and Hyderabad, the
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FIGURE 1

Spatial distribution of (A) absolute percentage of ARI in children under 5 years, (B) ARI prevalence normalized to the children population density

(children with ARI/km2), and (C) hot and cold spots of ARI in children under 5 years. The darker red shades indicate higher values/hotspots of

ARI. The inset map shows the location of India on the world map.

prevalence of ARI was >5%. Many districts in the northern

states were found to have the prevalence of ARI of >5%,

with several other districts varying between 2–5%. Similarly,

many districts of Maharashtra (west), Telangana (south),

and Tamil Nadu (south) showcased the prevalence of ARI

between 2–5%.

The absolute ARI prevalence in percentage was normalized

to the children population density at the district level for relative

comparison, as shown in Figure 1B. The highest prevalence

of ARI (>1,001 cases/km2) was observed predominantly in

the districts of the Great Plains of India (Indus–Ganga–

Brahmaputra plains), which stretches from Jammu and Kashmir

to West Bengal and includes the states of Punjab, Haryana,

Uttar Pradesh, and Bihar. Several districts in Uttar Pradesh

showed highest prevalence rates of ARI among children. The

highest incidence of ARI per km2 was also observed in Kolkata,

Mumbai, Delhi, Chennai, Hyderabad, and Chandigarh, which

are major cities in India.

The hotspots of ARI in children under 5 years are shown

in Figure 1C. ARI hotspots, with a 95% confidence level, were

predominantly seen in north India, covering the entire state/UTs

of Uttar Pradesh and Delhi and many districts of Bihar,

Haryana, Punjab, Uttarakhand, Himachal Pradesh, and Jammu

and Kashmir.

Spatial distribution of environmental
pollutants and population density

The ambient PM2.5 (µg/m3) and PM10 (µg/m3)

concentrations at the district level across India are shown

in Figure 2A. The average district-wise PM2.5 concentration

in India was 62.4 µg/m3. The entire floodplains of the

Ganges River in north India were gravely affected by high

concentrations of PM2.5. In several districts of Uttar Pradesh,

Haryana, Delhi, and Bihar, alarming concentrations (>100

µg/m3) of PM2.5 were observed. PM2.5 concentrations

surrounding the Ganges Plains were also very high (60–80

µg/m3). The average PM10 concentration in Indian cities

was 104.1 µg/m3. The highest concentrations of PM10 (>200

µg/m3) were observed in the cities of the Ganges Plains,

especially around the National Capital Territory (NCT)
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FIGURE 2

Spatial distribution of (A) ambient air pollutants PM2.5 (µg/m3) and PM10 (µg/m3), and (B) population density (persons/km2). The darker red and

brown shades in the maps denote higher PM2.5 and population density, respectively. The higher concentrations of PM10 in the major cities of

India are represented by larger circles.

of Delhi. The majority of the developed cities in the states of

Punjab, Haryana, Uttar Pradesh, Uttarakhand, Bihar, Jharkhand,

and West Bengal were the major hotspots for PM10. The state

capitals of Chhattisgarh (Raipur), Madhya Pradesh (Bhopal),

and Rajasthan (Jaipur) also reported alarming concentrations

(150–200 µg/m3) of PM10.

The density of the population (persons/km2) at the district

level is shown in Figure 2B. In addition to megacities of India,

such as Mumbai, Kolkata, Delhi, Chennai, Bengaluru, and

Hyderabad, the most populous districts are found in the states

of Uttar Pradesh, Punjab, Bihar, Jammu and Kashmir, and West

Bengal, with a density of >800 persons per km2.

Spatial distribution of significant
household, children, and demography
factors

The district-wise pan-India distribution of significant

household, children, and demographic factors is shown in

Figures 3A–D. The usage of clean cooking fuel across different

districts of India is shown in Figure 3A. Clean fuel includes the

use of electricity, LPG/natural gas, or biogas in the household.

The district-level data showed that the mean usage of clean

fuel for cooking was 37.5%. The class interval of 0.0–20 (%)

indicated the districts with the lowest usage of clean fuel, and

these districts were predominantly in the north and eastern

parts of India, comprising the states of Uttar Pradesh, Madhya

Pradesh, Chhattisgarh, Bihar, Jharkhand, Odisha, West Bengal,

Assam, and Meghalaya. Clean fuel usage was high in many

districts of South India, especially in the states of Tamil Nadu,

Kerala, Andhra Pradesh, and Maharashtra.

The spatial pattern of the illiteracy rate is shown in

Figure 3B. The Census of India (2011) data showed that the

average illiteracy rate in Indian districts was 37.6%. Except for

Kerala and certain districts in Mizoram, the illiteracy rate across

districts in India is more than 20%. Most of the districts in

the northern states (Uttar Pradesh, Bihar, Rajasthan, Madhya

Pradesh, and Jharkhand) have a higher illiteracy rate (>40%).

The improved sanitation facility (non-shared toilet facilities

in the households) at the district level across India is shown

in Figure 3C. The average availability of improved sanitation

facilities in Indian districts was 47.7%.Many districts in the ARI-

prevalent states of Uttar Pradesh, Bihar, Jharkhand, Madhya

Pradesh, and Odisha had a low prevalence of sanitation facilities,

while states such as Kerala, Punjab, and Haryana had improved

sanitation facilities. The prevalence of diarrhea among children

in India was comparatively highest in several districts of Uttar

Pradesh, Uttarakhand, and Bihar states and a few districts in the

states of Jammu and Kashmir, Jharkhand, Meghalaya, Madhya

Pradesh, and Maharashtra (Figure 3D).
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FIGURE 3

Spatial pattern of (A) usage of clean cooking fuel, (B) illiteracy rate, (C) improved sanitation facility, and (D) children with diarrhea in India. The

district-wise percentage value of each parameter is classified into five classes.

Spatial distribution of smoking, a
behavioral risk factor

The district-wise spatial distribution (%) of tobacco

consumption among men and women is shown in Figure 4,

and the state-wise distribution (%) of cigarettes and bidis, the

two dominant types of smoking tobacco across the different

states/UTs in India, is shown in Supplementary Figure S1. In

addition to the northern-eastern (NE) states, the prevalence

(>60%) of tobacco consumption by men was high in a majority

of districts of Madhya Pradesh and Uttar Pradesh (Figure 4A).

Tobacco consumption by women was >5% in the districts

of the northern states of India (Figure 4B). Even though the

national average of smoking/tobacco use in India was around

13%, the ARI-dominated northern (Jammu and Kashmir,

Himachal Pradesh, Uttarakhand, and Haryana) and central

(Madhya Pradesh) states showed >20% tobacco consumption

(either in cigarettes or bidis, or both). All the NE states

and West Bengal also reported a very high prevalence of

smoking/tobacco consumption.

Distribution of risk factors in the ARI
hotspots

The average distribution of risk factors in the major ARI

hotspot states/UT of India is given in Table 1. The normalized

ARI cases (ARI children per sq.km) in the hotspot states/UTs

of Uttar Pradesh, Bihar, and Delhi were higher than average

cases in all Indian districts. Delhi was 20 times higher than the

national average. The average levels of environmental pollutants

(PM2.5 and/ PM10) were higher in all the hotspot states, and

in Delhi, it was more than two times the national average.

The household variables such as clean cooking fuel, improved

sanitation facilities, and status of children with diarrhea were

worse in Bihar and Uttar Pradesh. When compared with the
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FIGURE 4

District-wise spatial distribution of (A) tobacco consumption by men and (B) tobacco consumption by women in India. The darker shades in the

maps show higher tobacco consumption.

TABLE 1 Distribution of environmental, household, demographic, and behavioral variables in the ARI hotspot states/UTs of India.

State/UT Normalized

ARI (ARI

Children/

km2)

PM2.5

(µg/m3)

PM10

(µg/m3)

Clean

cooking

fuel (%)

Illiteracy

(%)

Improved

sanitation

(%)

Diarrhoeal

children

(%)

Men’s

tobacco

consumption

(%)

Women’s

tobacco

consumption

(%)

National 336 62.4 104.1 37.4 37.5 47.6 8.4 47.8 9.6

(0–42,236) (0–113.2) (31.5-

261.9)

(0–99.5) (11.3–71.2) (0–99.5) (0–44.7) (0–100) (0–78.1)

Bihar 549 102.7 160.4* 16.4 49.6 24.8 9.8 50.8 2.9

(96–2,147) (72.3–

124.2)

(5.2–51.7) (39.2–59.2) (12.5–49.9) (3.1–18.1) (36.1–63.6) (0.4–7.6)

Uttar Pradesh 653 109.8 163.7 28.9 42.9 32.3 14.3 54.5 8.0

(11–2,504) (62.9–

131.3)

(43.5-262.0) (9.2–78.5) (29.2–62.1) (10.4–67.1) (4.2–29.1) (34.1–79.2) (1.6–21.8)

Delhi 6,361 131.1 219.3* 97.6 23.4 74.3 9.1 33.3 1.5

(0–42,236) (128.3–

133.2)

(94.5–99.5) (19.6–28.1) (64.6–87.8) (5.0–18.1) (18.9–48.2) (0.8–2.6)

Haryana 300 106.7 134.7 49.4 34.6 79.2 7.5 36.2 1.6

(0–1,551) (64.8–

131.0)

(101.3-

173.0)

(17.2–82.6) (26.6–58.2) (46.7–91.0) (1.6–15.2) (21.8–57.7) (0.3–5.7)

Punjab 249 77.8 127.4 63.6 33.6 81.6 7.2 19.4 0.1

(24–682) (55.5–

102.6)

(73.5-188.3) (40.6–80.7) (24.4–45.0) (74.7–89.2) (3.4–17.4) (10.7–35.8) (0–0.5)

The average value of a state represents the average of all the district values within the particular state, and the national average value indicates the average of all the 640 districts in the

country. The values within brackets represent the range of values. * PM10 values were obtained from only one city in these states/UTs. The bold values indicate the national average of the

respective variables.
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national average, men’s tobacco consumption is also high in

Bihar and Uttar Pradesh.

Statistical analysis of the prevalence of
ARI and associated factors

The multivariate association between the prevalence of ARI

cases per 100 population and children, mothers, household,

and environmental variables estimated by the quasi-Poisson

regression model is shown in Table 2. The descriptive statistics

of the dependent and independent variables are presented in

Supplementary Table S1. There was a statistically significant

association between ARI and PM2.5 µg/m3, percentage of

illiterates, the percentage of children with diarrhea, and the

mother’s mean BMI. For each µg/m3 increase in the PM2.5

level, the rate of ARI cases increased by 0.6% (aIRR 1.006; 95%

CI 1.003–1.008). The rate of ARI increased by 1.1% for each

percentage increase in district-level illiteracy (aIRR 1.011; 95%

CI 1.002–1.021). For each percentage point increase in diarrhea

(aIRR 1.059; 95% CI 1.051–1.068), the rate of ARI increased by

5.9%. The rate of ARI increased by 1.3 times with an increase

in each mean maternal BMI (aIRR 1.320, 95% CI: 1.206–1.445).

The predictors (unclean fuel use %, improved sanitation %,

percentage of poor households, mean household size, and the

number of children ever born to a woman) were associated with

the prevalence of ARI only in the univariate analysis.

Discussion

The two primary outcomes of the study were (i) mapping

the spatial distribution and hotspots of ARI at the district level

and (ii) mapping the environmental, household, demography,

and behavioral risk factors across India to find their association

with ARI. The hotspot districts of ARI cases were predominantly

from the states/UTs of Uttar Pradesh, Bihar, Delhi, Haryana,

and Punjab (Indo-Gangetic Plain inhabitants). Spatial mapping

showed PM2.5, PM10, population density, tobacco use, clean

fuel, and improved sanitation facilities to have a strong overlap

with ARI, while statistical analysis showed PM2.5, population

density, and improved sanitation facilities to have a significant

association with ARI among children under 5 years in India.

The states of Uttar Pradesh, Punjab, Bihar, and West

Bengal were densely populated (>800 persons/sq. km) and

had a high incidence of ARI. The heavily populated megacities

of Kolkata, Delhi, Mumbai, Hyderabad, and Chandigarh also

showed a high incidence of ARI, suggesting a strong link

between population density, urbanization, and ARI. Similar

findings were reported in several studies conducted in India,

where overcrowding was associated with the prevalence of

ARI in children under 5 years (32, 33). Many megacities in

India are densely populated and comprise many slums; Dharavi

in Mumbai is the biggest slum in Asia. Slums characterized

by poor urban populations, overcrowded with unhygienic

conditions, and congested housing are favorable hotspots for

many respiratory diseases (34). In Brazil, a high incidence of ARI

has been reported in children from slums (34, 35). Furthermore,

the high transmission of viruses in slums is facilitated by

resource-limited facilities, lack of appropriate spacing, improper

sanitation systems, poor nutritional status, and education (36).

Spatial mapping indicated strong overlap between

environmental pollutants (PM2.5 and PM10) and ARI

incidence in children. In this study, the entire Great Plains

of India comprising the Indus, Ganges, and Brahmaputra

floodplains in the north, covering the states/UTs of Punjab,

Haryana, Delhi, Uttar Pradesh, and Bihar, showed alarming

concentrations (>100 µg/m3) of PM2.5 and (>150 µg/m3)

PM10. Importantly, these states/UTs also showed a very high

incidence of ARI, indicating a strong link between PM2.5,

PM10, and ARI. The risk of ARI was suggested to increase by

12%; for every 10 µgm, there was a 3 µg/m3 rise in PM2.5 (37).

The quasi-Poisson regression model based on district-level

data showed a 1.7% rise in the number of ARI cases for each

additional unit increase in PM2.5 levels. Vehicular and industrial

pollution, agricultural crop burning, solid fuel cookstove use,

and household tobacco use were the primary sources of PM2.5

and were associated with increased hospitalization related to

adverse respiratory conditions (16). The highly productive and

fertile Indo-Gangetic basin supports more than 200 million lives

and hosts >10% of India’s coal-fired power generation plants.

The entire region has high levels of nitrogen and sulfur oxides,

which lead to increased particulate matter suspensions in the air

and respiratory diseases (38). Agricultural crop residue burning

(ACRB) in northern India (Haryana and Punjab) was a major

contributor to PM2.5, and the downwind spiked PM2.5 levels

in Delhi to ∼20 times the permissible concentration specified

by the WHO (8). In areas where ACRB is intense, there was

a three-fold increase in ARI, and children under 5 years were

the most vulnerable (8). The increased levels of PM2.5 had a

significant association with population density (39). Spatial

analysis indicated that the heavily populated states, particularly

in the Indo-Gangetic plains, to have high concentrations (>100

µg/m3) of PM2.5, suggesting the strong interplay between

population density and increased PM2.5 levels in increasing the

prevalence of ARI among children under 5 years in India.

Diarrhea is significantly associated with ARI in children

under 5 years. Acute lower respiratory tract infections (ALRIs)

and diarrhea are the major causes of morbidity and mortality

among children under 5 years (40). A study conducted

among infants aged 0–23 months in Pakistan reported children

comorbid with diarrhea to have higher odds of ARI (41). A

quantitative analysis among Nepali and Indian children found

the incidence of ARI to increase when an episode of diarrhea

occurred within 28 days before the onset of ARI (40). Similarly,

in Ghana, within 2–4 weeks of the occurrence of diarrhea,
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TABLE 2 Association between ARI cases and environmental, household, behavioral, and demographic variables.

Independent variables uIRR 95% CI p aIRR 95% CI p

PM 2.5 (µg/m3) 1.007 1.005–1.009 0.000 1.006 1.003–1.008 0.000

Unclean fuel use (%) 1.004 1.001–1.007 0.012 1.004 0.998–1.010 0.200

Improved sanitation (%) 0.995 0.992–0.998 0.001 0.999 0.993–1.004 0.580

Illiteracy (%) 1.015 1.008–1.022 0.000 1.011 1.002–1.021 0.022

Child immunization (%) 1.000 0.997–1.004 0.871 1.001 0.997–1.005 0.657

Rural districts vs. urban districts 1.245 1.067–1.454 0.005 1.109 0.917–1.342 0.288

Smoking tobacco men (%) 1.001 0.997–1.005 0.672 1.002 0.996–1.008 0.536

Smoking tobacco women (%) 0.992 0.987–0.997 0.003 0.999 0.992–1.007 0.852

Diarrhea in children (%) 1.068 1.060–1.077 0.000 1.059 1.051–1.068 0.000

Low birth weight (%) 0.991 0.979–1.002 0.121 1.006 0.993–1.019 0.354

Poor households (%) 1.003 1.001–1.006 0.008 1.004 0.997–1.011 0.244

Maternal BMI (mean) 1.035 0.981–1.091 0.211 1.320 1.206–1.445 0.000

Household size (mean) 1.195 1.104–1.294 0.000 1.027 0.931–1.133 0.597

Number of children (mean) 1.394 1.207–1.611 0.000 0.810 0.629–1.044 0.103

Months of breastfeeding (median) 1.012 0.988–1.036 0.331 1.005 0.981–1.030 0.668

uIRR, unadjusted incidence rate ratio; aIRR, adjusted incidence rate ratio; BMI, body mass index. The bold values indicate that the values are significant at p < 0.05.

the risk of ALRI substantially increased among the children

(42). A previous study showed that diarrhea led to acute loss

of micronutrients, dehydration, and stresses in the immune

system, resulting in the increased risk of ALRI (42). The

body mass index of the mother was also associated with the

increased risk of ARI among children under 5 years in India.

Similar observations were reported by Rajappan et al. (43),

where high BMI of the mother was associated with increased

risks of wheezing, prolonged cough, and lower respiratory tract

infection in their children. A significant association between pre-

pregnancy maternal obesity and asthma and current wheezing

in 7–8 years children was reported in a development study

cohort in Amsterdam (44). Maternal obesity was found to affect

the development of the lower airway tract in infants, and the

alterations in airway branching may result in an increased risk

of respiratory infections (43).

A strong spatial association between the usage of unclean

cooking fuel and the hotspots of ARI was observed. The results

from the univariate analysis also showed a significant association

between the prevalence of ARI and unclean fuel use. Household

air pollution (HAP), majorly contributed by the use of coal,

wood, charcoal, animal dung, and crop residues for cooking and

heating, was identified as a major cause of respiratory illness

and death in children under 5 years in India (45). Children

under 5 years were found to be highly vulnerable to HAP if

they spend a considerable amount of time with their mothers

in the kitchen (46, 47). An estimated 3 billion people, especially

from low- and middle-income countries (LMICs), cook with

solid fuels, which are the primary sources of household air

pollution (HAP) (46). In India, in 2017, an estimated 55% of the

population used solid fuels for cooking (48). The ARI hotspots in

India, clustered primarily in central and northern belts of India,

pointed toward the use of unclean cooking fuel in these states.

The use of solid fuel was relatively higher (≥80%) in north and

central India (Bihar, Uttar Pradesh,Madhya Pradesh, Jharkhand,

Chhattisgarh) and some states in the east (Odisha and West

Bengal) and the north-east (Assam and Meghalaya). Among the

states that used high solid fuel, Uttar Pradesh and Bihar reported

a >5% ARI incidence (>10 children/km2), while Jharkhand

andWest Bengal reported a >2% incidence (2–5 children/km2).

Also, the prevalence of ARI (persons per sq. km) was observed to

be relatively higher in these states. A similar trend in the spatial

distribution in the increased PM2.5 level (101–133 ug/m3) was

observed in the central and northern belts, especially in New

Delhi, Uttar Pradesh, and Bihar. The WHO guideline for 24

hours mean PM2.5 is 25 µg/m3. However, in India, HAP as

high as 609 µg/m3 has been recorded in the kitchen of rural

households (47). A recent Indian study that utilized NFHS-4

datasets showed that households using unclean cooking fuel,

households without separate kitchens, and smoking inside the

house increased the likelihood of ARI in children under 5

years presumably due to indoor air pollution (49). Similarly,

a prospective case–control study in South India (50) and a

prospective observational study in rural central India (6) have

documented the association between indoor air pollution and

the risk of ARI in children. HAP exposure–response studies in

other LMICs, such as Guatemala and Nepal, have also shown a

direct association between HAP and ARI (51, 52). In order to

promote the use of clean cooking fuel, several initiatives were

introduced by the Indian government, including the Pradhan
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Mantri Ujjwala Yojana scheme, giving free liquid petroleum

gas (LPG) connection to over 80 million households below

the poverty line (53) and is in the process of replacing solid

cooking fuel for cooking with LPG in 80% of the households by

2019 (54).

In most ARI hotspot states, cigarettes and bidis are

widely smoked. The use of bidi is very high in the states

of West Bengal, Himachal Pradesh, Haryana, Uttarakhand,

and Madhya Pradesh, which are also the hotspot states

of ARI. Tobacco smoking, contributing majorly to

indoor air pollution, is an important risk factor for ARI

(55). In a cross-sectional study conducted in India, the

analysis of NFHS-4 data indicated that indoor smoking

increased ARI susceptibility in children under 5 years (49).

Particulate matter is one of the major toxic components

found in tobacco smoke. Fractions of PM10 and PM2.5

deposit and retain in the respiratory tract (56), and

long-term exposure to PM2.5 increases the risk of ARI in

children (57).

This study found most districts, including those with

a higher rate of the prevalence of ARI, lack access to

improved sanitation facilities. When mapped for sanitation

facilities, the ARI hotspot states of Uttar Pradesh, Bihar,

and Madhya Pradesh had relatively lower sanitation facilities,

while Uttarakhand, Punjab, Himachal Pradesh, and Haryana,

and the other ARI hotspots ranked higher in the sanitation

levels. A similar observation was made by Reese et al. in

their matched cohort study carried out in Odisha, India,

which reported no reduction in ARI on improved water

and sanitation intervention (58). On the contrary, several

randomized controlled trials showed a strong association

between hygiene interventions and reduction in ARI symptoms

in urban children of LMICs (59). A randomized control

trial carried out in Bangladesh showed a reduced prevalence

of reported ARI in the household that received sanitation

intervention (latrines, potties, scoops, chlorinated drinking

water, handwashing alone, or in combination with nutritional

supplements) compared with the control group (17). Similarly,

the analysis of Demographic Health Survey (DHS) data in

Bangladesh showed that a lack of improved water, sanitation,

and hygiene facilities was associated with higher odds of ARI

in children under 5 years (60). Statistical analysis in this

study showed that improved sanitation facilities were associated

with a reduction in the rate of ARI, which is in line with

previous findings.

This study has its limitations and challenges. Importantly,

the study results are not causative and reflect only

associations between the independent variables and ARI.

The statistical analysis was challenging as the datasets

were aggregated from multiple sources (NFHS-4, Census

of India, satellite products, and ground-based stations).

Few of the independent variables were self-reported,

and the respondents may have given answers that are

generally desirable, especially regarding cooking fuel and

improved sanitation.

Conclusion

Population density, environmental pollution (PM2.5 and

PM10), comorbidity of diarrhea, maternal BMI, and sanitation

were found to be significantly associated with ARI in children

under 5 years in India; most of the ARI hotspot states

with a higher population density exhibited a relatively higher

level of PM2.5. Among the household factors, the use of

clean cooking fuel, poor sanitation, tobacco consumption,

and illiteracy rate shared a strong spatial association with

ARI in many hotspot districts, suggesting a synergistic role

for multiple variables in causing ARI. Overall, this study

provides important insights into the spatial distribution of

ARI hotspots and associated risk factors at the district level

across India. To draw decisive inferences, more research

and modeling studies are required, especially in the hotspot

states/UTs, to support policymakers and stakeholders to

formulate a comprehensive action plan to reduce ARI

in children.
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