1,039 research outputs found

    Invasive Threats to the American Homeland

    Get PDF

    Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas

    Full text link
    While humans are highly capable of recovering from external disturbances and uncertainties that result in large tracking errors, humanoid robots have yet to reliably mimic this level of robustness. Essential to this is the ability to combine traditional "ankle strategy" balancing with step timing and location adjustment techniques. In doing so, the robot is able to step quickly to the necessary location to continue walking. In this work, we present both a new swing speed up algorithm to adjust the step timing, allowing the robot to set the foot down more quickly to recover from errors in the direction of the current capture point dynamics, and a new algorithm to adjust the desired footstep, expanding the base of support to utilize the center of pressure (CoP)-based ankle strategy for balance. We then utilize the desired centroidal moment pivot (CMP) to calculate the momentum rate of change for our inverse-dynamics based whole-body controller. We present simulation and experimental results using this work, and discuss performance limitations and potential improvements

    Straight-Leg Walking Through Underconstrained Whole-Body Control

    Full text link
    We present an approach for achieving a natural, efficient gait on bipedal robots using straightened legs and toe-off. Our algorithm avoids complex height planning by allowing a whole-body controller to determine the straightest possible leg configuration at run-time. The controller solutions are biased towards a straight leg configuration by projecting leg joint angle objectives into the null-space of the other quadratic program motion objectives. To allow the legs to remain straight throughout the gait, toe-off was utilized to increase the kinematic reachability of the legs. The toe-off motion is achieved through underconstraining the foot position, allowing it to emerge naturally. We applied this approach of under-specifying the motion objectives to the Atlas humanoid, allowing it to walk over a variety of terrain. We present both experimental and simulation results and discuss performance limitations and potential improvements.Comment: Submitted to 2018 IEEE International Conference on Robotics and Automatio

    3-Hydroxy-2,6-dinitroacetophenone: an unusual substitution pattern resulting from nitration of 3-hydroxyacetophenone

    Get PDF
    Nitration of 3-hydroxyacetophenone gives 2,6-dinitro-3-hydroxyacetophenone, C8H6N206, in which the nitro groups have entered the sterically least favourable positions in the aromatic nucleus. None of the expected substitution in the 4-position was observed. The two nitro groups flanking the carbonyl side chain are different in that one is in the plane of the aryl ring but the other is twisted well out of the plane

    Bright Lenses and Optical Depth

    Get PDF
    In gravitational lensing, the concept of optical depth assumes the lens is dark. Several microlensing detections have now been made where the lens may be bright. Relations are developed between apparent and absolute optical depth in the regime of the apparent and absolute brightness of the lens. An apparent optical depth through bright lenses is always less than the true, absolute optical depth. The greater the intrinsic brightness of the lens, the more likely it will be found nearer the source.Comment: 18 pages including 4 figures, AASTeX, ApJ in pres

    Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge

    Get PDF
    We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2 compounds. From these high-resolution measurements we conclude that the magnetic structure is commensurate for both compositions. The energy spectrum of the resonant scattering is in reasonable agreement with theoretical calculations using the full-potential linear augmented plane wave method with a local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid Com
    • …
    corecore