711 research outputs found

    Desensitization of angiotensin receptor function

    Get PDF
    Desensitization of angiotensin receptor function. Angiotensin II is an eight amino acid peptide which plays a major role in the regulation of cardiovascular homeostasis. The physiologic effects of angiotensin (Ang) II are mediated by a G-protein coupled receptor, termed AT1, which activates phospholipase C. A major factor regulating angiotensin II receptor function is the rapid desensitization following agonist stimulation. However, despite years of investigation, the mechanism by which the angiotensin receptor is regulated remains unclear. The cloning of the AT-1 receptor and the availability of cell lines which stabily express this receptor has helped elucidate these mechanisms. In this paper, we review the data from our laboratory concerning the post-translational regulation of the angiotensin receptor function

    Use of BODIPY (493/503) to Visualize Intramuscular Lipid Droplets in Skeletal Muscle

    Get PDF
    Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs). Here, we describe the utilization of the BODIPY (493/503) dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503) dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle

    ALVIN dives on the continental margin off the southeastern United States, July 2-13, 1967

    Get PDF
    Originally issued as Reference No. 67-80, series later renamed WHOI-In late June and July, 1967, the Deep Submergence Research Vehicle (DSRV) ALVIN, aboard its mother snip, LULU, proceeded from the spring base of operations, Nassau, to its home port of Woods Hole. During this trip, from July 2 to July 14, a series of five dives were made by ALVIN on the Blake Plateau off Georgia and South Carolina, and on the continental slope north of Cape Hatteras.U.S. Geological Survey Contracts 14-08-0001-10875 Nonr-3484(00)

    Photomorphogenic mutants of tomato

    Get PDF
    Photomorphogenesis of tomato is being studied with the aid of mutants which are either modified in their photore- ceptor composition or in their signal transduction chain(s) . Several mutants affecting the phytochrome family of photoreceptors, some of which appear deficient for specific genes encoding phytochrome apoproteins have been isolated . In addition, other mutants, including transgenic lines overexpressing phytochrome A, exhibit exaggerated photomorphogenesis during de-etiolation . Anthocyanin biosynthesis and plastid development are being used as model systems for the dissection of the complex interactions among photomorphogenic photoreceptors and to elucidate the nature of their transduction chains

    Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes

    Get PDF
    Eukaryotic Rvb1p and Rvb2p are two highly conserved proteins related to the helicase subset of the AAA+ family of ATPases. Conditional mutants in both genes show rapid changes in the transcription of over 5% of yeast genes, with a similar number of genes being repressed and activated. Both Rvb1p and Rvb2p are required for maintaining the induced state of many inducible promoters. ATP binding and hydrolysis by Rvb1p and Rvb2p is individually essential in vivo and the two proteins are associated with each other in a high molecular weight complex that shows ATP-dependent chromatin remodeling activity in vitro. Our findings show that Rvb1p and Rvb2p are essential components of a chromatin remodeling complex and determine genes regulated by the complex

    Conduction Electron Scattering and Spin-Flipping at Sputtered Co/Ni Interfaces

    Full text link
    Current-perpendicular-to-plane magnetoresistance (CPP-MR) measurements let us quantify conduction electron scattering and spin-flipping at a sputtered ferromagnetic/ferromagnetic (F1/F2 = Co/Ni) interface, with important consequences for CPP-MR and spin-torque experiments with perpendicular anisotropy. We use ferromagnetically coupled ([Ni/Co]xn)Ni multilayers, and Py-based, symmetric double exchange-biased spin-valves (DEBSVs) containing inserts of ferromagnetically coupled ([Co/Ni]xn)Co or ([Ni/Co]xn)Ni multilayers, to derive Co/Ni interface specific resistances AR(Co/Ni)(Up) = 0.03 (+0.02)(-0.03) f-ohm-m^2 and AR(Co/Ni)(down) = 1.00 +/- 0.07 f-ohm-m^2, and interface spin-flipping parameter delta(Co/Ni) = 0.35 +/- 0.05. The specific resistances are consistent with our no-free-parameter calculations for an interface thickness between 2 and 4 monolayers (ML) that is compatible with expectations.Comment: 5 pages, 2 figures, 3 tables, Submitted to Phys.Rev.B (Rapid Comm.

    Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury.

    Get PDF
    BACKGROUND: Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG) 3 days following sciatic nerve transection (axotomy). Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. RESULTS: Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P < 0.05 significance threshold for detecting regulated genes, despite the large number of hypothesis tests required. For the naïve versus axotomy comparison, a 2-fold cut off alone led to an estimated error rate of 16%; combining a >1.5-fold expression change and P < 0.05 significance reduced the estimated error to 5%. The 2-fold cut off identified 178 genes while the combined >1.5-fold and P < 0.05 criteria generated 240 putatively regulated genes, which we have listed. Many of these have not been described as regulated in the DRG by axotomy. Northern blot, quantitative slot blots and in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r(2 )= 0.8567). Temporal patterns of individual genes regulation varied. CONCLUSIONS: We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission
    corecore