13 research outputs found

    Impact of remittances using propensity score matching

    No full text

    Motivations to remit - evidence from Chitwan, Nepal

    No full text
    Voyager bib number: 992444

    Nonlinear permanent migration response to climatic variations but minimal response to disasters.

    No full text
    We present a microlevel study to simultaneously investigate the effects of variations in temperature and precipitation along with sudden natural disasters to infer their relative influence on migration that is likely permanent. The study is made possible by the availability of household panel data from Indonesia with an exceptional tracking rate combined with frequent occurrence of natural disasters and significant climatic variations, thus providing a quasi-experiment to examine the influence of environment on migration. Using data on 7,185 households followed over 15 y, we analyze whole-household, province-to-province migration, which allows us to understand the effects of environmental factors on permanent moves that may differ from temporary migration. The results suggest that permanent migration is influenced by climatic variations, whereas episodic disasters tend to have much smaller or no impact on such migration. In particular, temperature has a nonlinear effect on migration such that above 25 °C, a rise in temperature is related to an increase in outmigration, potentially through its impact on economic conditions. We use these results to estimate the impact of projected temperature increases on future permanent migration. Though precipitation also has a similar nonlinear effect on migration, the effect is smaller than that of temperature, underscoring the importance of using an expanded set of climatic factors as predictors of migration. These findings on the minimal influence of natural disasters and precipitation on permanent moves supplement previous findings on the significant role of these variables in promoting temporary migration

    Nonlinear permanent migration response to climatic variations but minimal response to disasters

    No full text
    We present a microlevel study to simultaneously investigate the effects of variations in temperature and precipitation along with sudden natural disasters to infer their relative influence on migration that is likely permanent. The study is made possible by the availability of household panel data from Indonesia with an exceptional tracking rate combined with frequent occurrence of natural disasters and significant climatic variations, thus providing a quasi-experiment to examine the influence of environment on migration. Using data on 7,185 households followed over 15 y, we analyze whole-household, province-to-province migration, which allows us to understand the effects of environmental factors on permanent moves that may differ from temporary migration. The results suggest that permanent migration is influenced by climatic variations, whereas episodic disasters tend to have much smaller or no impact on such migration. In particular, temperature has a nonlinear effect on migration such that above 25 °C, a rise in temperature is related to an increase in outmigration, potentially through its impact on economic conditions. We use these results to estimate the impact of projected temperature increases on future permanent migration. Though precipitation also has a similar nonlinear effect on migration, the effect is smaller than that of temperature, underscoring the importance of using an expanded set of climatic factors as predictors of migration. These findings on the minimal influence of natural disasters and precipitation on permanent moves supplement previous findings on the significant role of these variables in promoting temporary migration

    The influence of climate variability on internal migration flows in South Africa

    No full text
    This work investigates the impact of climate variability on internal migration flows in post-apartheid South Africa. We combine information from South African censuses and climatic data to build a panel database covering the waves 1997-2001 and 2007-2011. The database enables the examination of the effect of spatiotemporal variability in temperature and precipitation on inter-district migration flows defined by five-year intervals. We employ a gravity approach where bilateral migration flows are explained by climate variability at the origin, along with a number of geographic, socio-economic and demographic factors traditionally identified as potential drivers of migration. Overall, we find that an increase in positive temperature extremes as well as positive and negative excess rainfall at the origin act as a push effect and enhance out-migration. However, the significance of the effect of climate on migration greatly varies by migrant characteristics. Particularly, flows of black and low-income South African migrants are strongly influenced by climatic variables whereas those of white and high-income migrants exhibit a weak impact. We also argue that agriculture may function as a transmission channel through which adverse climatic conditions affect migration
    corecore