6 research outputs found

    High-Speed Electronic Memories and Memory Subsystems

    Get PDF
    Memories have played a vital role in embedded system architectures over the years. A need for high-speed memory to be embedded with state-of-the-art embedded system to improve its performance is essential. This chapter focuses on the development of high-speed memories. The traditional static random access memory (SRAM) is first analyzed with its different variant in terms of static noise margin (SNM); these cells occupy a larger area as compared to dynamic random access memory (DRAM) cell, and hence, a comprehensive analysis of DRAM cell is then carried out in terms of power consumption, read and write access time, and retention time. A faster new design of P-3T1D DRAM cell is proposed which has about 50% faster reading time as compared to the traditional three-transistor DRAM cell. A complete layout of the structure is drawn along with its implementation in a practical 16-bit memory subsystem

    Development of Vibration Piezoelectric Harvesters by the Optimum Design of Cantilever Structures

    Get PDF
    Piezoelectric energy harvesting is a way of converting waste mechanical energy into usable electrical form. The selection of mechanical devices for conversion of mechanical to electrical energy is a significant part of vibration energy harvesting. The articles provide designing and optimization of a cantilever piezoelectric energy harvester. At first, is the selection of best mechanical device for energy harvesting application. A cantilever without proof mass is then analyzed for the selection of substrate, and piezoelectric material also plays a key role in the performance of the device. Aluminum is selected as a substrate, while zinc oxide acts as the piezoelectric layer. Addition of proof mass reduces the resonant frequency of the device to about 51 Hz as compared to 900 Hz for an aluminum cantilever beam. An electromechanical study shows an active conversion of mechanical input energy to electrical output energy. Power frequency response functions of the resultant structure are able to generate 0.47 mW power having 6.8 μA current at 1 g input acceleration

    Variation of Sensitivity of a MEMS Capacitive Accelerometer Based Microphone with Suspension System Topology

    Get PDF
    The present research seeks to improve a highly sensitive MEMS capacitive accelerometer as a probable completely implantable hearing aid microphone. The research analyses the effect of different suspension system topologies on accelerometer efficiency. The topology of folded beam suspension is considered to be the most suitable for the proposed system. The design factors such as weight, height and resonant frequency are considered to make the accelerometer an effective biomedical system which can be completely implanted with COMSOL MULTIPHYSICS 4.2 the optimized system is simulated and validated. The accelerometer occupies 1mm2 of sensing area and achieves a nominal capacitance of 5.30 pF and an optimized capacitive sensitivity of 6.89fF

    Finite-element modeling of piezoelectric energy harvesters using lead-based and lead-free materials for voltage generation

    No full text
    Piezoelectric energy harvesters are capable of sensing mechanical vibrations and converting them into usable energy to empower low-power microsystems. In this work, a novel seesaw cantilever structure-based broadband piezoelectric energy harvester has been designed using both lead-based and lead-free piezoelectric material. It has been observed that along with its structure dimensions and piezo material properties, a harvester’s load also determines its performance. An optimum load would yield maximum harvester power. The optimum value of a resistor generating peak power has been described in this work. The harvester is capable of producing a peak power of around 23 mW across a 0.14 MΩ load

    The ENERGY ECS Project: Smart and Secure Energy Solutions for Future Mobility

    Get PDF
    Electric and smart mobility are key enablers for their green energy transition. However, the electrification of vehicles poses several challenges, from the development of power components to the organization of the electric grid system. Moreover, it is expected that the smartification of mobility via sensors and novel transport paradigms will play an essential role in the reduction of the consumed energy. In response to these challenges and expectations, the ENERGY ECS project is pursuing smart and secure energy solutions for the mobility of the future, by developing power components, battery charging electronics, and self-powered sensors for condition monitoring, along with advanced techniques for grid management, applications of artificial intelligence, machine learning and immersing technologies. This paper presents the project’s objectives and reports intermediate results from the perspective of the targeted use cases

    Proceedings of International Conference on Women Researchers in Electronics and Computing

    No full text
    This proceeding contains articles on the various research ideas of the academic community and practitioners presented at the international conference, “Women Researchers in Electronics and Computing” (WREC’2021). WREC'21 was organized in online mode by Dr. B R Ambedkar National Institute of Technology, Jalandhar (Punjab), INDIA during 22 – 24 April 2021. This conference was conceptualized with an objective to encourage and motivate women engineers and scientists to excel in science and technology and to be the role models for young girls to follow in their footsteps. With a view to inspire women engineers, pioneer and successful women achievers in the domains of VLSI design, wireless sensor networks, communication, image/ signal processing, machine learning, and emerging technologies were identified from across the globe and invited to present their work and address the participants in this women oriented conference. Conference Title: International Conference on Women Researchers in Electronics and ComputingConference Acronym: WREC'21Conference Date: 22–24 April 2021Conference Location: Online (Virtual Mode)Conference Organizers: Department of Electronics and Communication Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, INDI
    corecore