39 research outputs found

    Association mapping and genetic dissection of drought-induced canopy temperature differences in rice

    Get PDF
    Drought-stressed plants display reduced stomatal conductance, which results in increased leaf temperature by limiting transpiration. In this study, thermal imaging was used to quantify the differences in canopy temperature under drought in a rice diversity panel consisting of 293 indica accessions. The population was grown under paddy field conditions and drought stress was imposed for 2 weeks at flowering. The canopy temperature of the accessions during stress negatively correlated with grain yield (r= –0.48) and positively with plant height (r=0.56). Temperature values were used to perform a genome-wide association (GWA) analysis using a 45K single nucleotide polynmorphism (SNP) map. A quantitative trait locus (QTL) for canopy temperature under drought was detected on chromosome 3 and fine-mapped using a high-density imputed SNP map. The candidate genes underlying the QTL point towards differences in the regulation of guard cell solute intake for stomatal opening as the possible source of temperature variation. Genetic variation for the significant markers of the QTL was present only within the tall, low-yielding landraces adapted to drought-prone environments. The absence of variation in the shorter genotypes, which showed lower leaf temperature and higher grain yield, suggests that breeding for high grain yield in rice under paddy conditions has reduced genetic variation for stomatal response under drought

    Heritability of ocular component dimensions in chickens: genetic variants controlling susceptibility to experimentally induced myopia and pretreatment eye size are distinct

    Get PDF
    Purpose. To investigate the extent to which shared genetic variants control (1) multiple ocular component dimensions and (2) both normal eye length and susceptibility to visually induced myopic eye growth. Methods. Two laboratory-reared populations of chicks were examined. The first was a three-generation pedigree of White Leghorn (WL) birds used in a selective breeding experiment testing susceptibility to monocular deprivation of sharp vision (DSV). The chicks were assessed before (age, 4 days) and after 4 days of treatment with diffusers. The second was the 10th generation of an advanced intercross line (AIL) derived from a broiler-layer cross (age, 3 weeks). Variance components analysis was used to estimate heritability and to assess the evidence for shared genetic determination. Results. All measured ocular components were moderately or highly heritable (range, 0.36–0.61; all P < 0.001) in both chick populations, and there were strong genetic correlations across the traits, corneal curvature, vitreous chamber depth, and axial length. The genetic correlations between eye size and myopia susceptibility traits were not significantly different from 0. Conclusions. The genetic variants controlling ocular component dimensions in chicks are shared across some ocular traits (corneal curvature, vitreous chamber depth, and axial length) but distinct for others (lens thickness and corneal thickness). The genetic variants controlling susceptibility to visually induced myopia in chicks are different from those controlling normal eye siz

    Ex vivo magnetic resonance imaging of crystalline lens dimensions in chicken

    Get PDF
    Purpose: A reduction in the power of the crystalline lens during childhood is thought to be important in the emmetropization of the maturing eye. However, in humans and model organisms, little is known about the factors that determine the dimensions of the crystalline lens and in particular whether these different parameters (axial thickness, surface curvatures, equatorial diameter, and volume) are under a common source of control or regulated independently of other aspects of eye size and shape. Methods: Using chickens from a broiler-layer experimental cross as a model system, three-dimensional magnetic resonance imaging (MRI) scans were obtained at 115-µm isotropic resolution for one eye of 501 individuals aged 3-weeks old. After fixation with paraformaldehyde, the excised eyes were scanned overnight (16 h) in groups of 16 arranged in a 2×2×4 array. Lens dimensions were calculated from each image by fitting a three-dimensional mesh model to the lens, using the semi-automated analysis program mri3dX. The lens dimensions were compared to measures of eye and body size obtained in vivo using techniques that included keratometry and A-scan ultrasonography. Results: A striking finding was that axial lens thickness measured using ex vivo MRI was only weakly correlated with lens thickness measured in vivo by ultrasonography (r=0.19, p<0.001). In addition, the MRI lens thickness estimates had a lower mean value and much higher variance. Indeed, about one-third of crystalline lenses showed a kidney-shaped appearance instead of the typical biconvex shape. Since repeat MRI scans of the same eye showed a high degree of reproducibility for the scanning and mri3dX analysis steps (the correlation in repeat lens thickness measurements was r=0.95, p<0.001) and a recent report has shown that paraformaldehyde fixation induces a loss of water from the human crystalline lens, it is likely that the tissue fixation step caused a variable degree of shrinkage and a change in shape to the lenses examined here. Despite this serious source of imprecision, we found significant correlations between lens volume and eye/body size (p<0.001) and between lens equatorial diameter and eye/body size (p<0.001) in these chickens. Conclusions: Our results suggest that certain aspects of lens size (specifically, lens volume and equatorial diameter) are controlled by factors that also regulate the size of the eye and body (presumably, predominantly genetic factors). However, since it has been shown previously that axial lens thickness is regulated almost independently of eye and body size, these results suggest that different systems might operate to control lens volume/diameter and lens thickness in normal chickens

    Sex, eye size, and the rate of myopic eye growth due to form deprivation in outbred white leghorn chickens

    Get PDF
    Purpose. There is considerable variation in the degree of form-deprivation myopia (FDM) induced in chickens by a uniform treatment regimen. Sex and pretreatment eye size have been found to be predictive of the rate of FD-induced eye growth. Therefore, this study was undertaken to test whether the greater rate of myopic eye growth in males is a consequence of their larger eyes or of some other aspect of their sex. Methods. Monocular FDM was induced in 4-day-old White Leghorn chicks for 4 days. Changes in ocular component dimensions and refractive error were assessed by A-scan ultrasonography and retinoscopy, respectively. Sex identification of chicks was performed by DNA test. Relationships between traits were assessed by multiple regression. Results. FD produced (mean ± SD) 13.47 ± 3.12 D of myopia and 0.47 ± 0.14 mm of vitreous chamber elongation. The level of induced myopia was not significantly different between the sexes, but the males had larger eyes initially and showed greater myopic eye growth than did the females. In multiple linear regression analysis, the partial correlation between sex and the degree of induced eye growth remained significant (P = 0.008) after adjustment for eye size, whereas the partial correlation between initial eye size and the degree of induced eye growth was no longer significant after adjustment for sex (P = 0.11). After adjustment for other factors, the chicks' sex accounted for 6.4% of the variation in FD-induced vitreous chamber elongation. Conclusions. The sex of the chick influences the rate of experimentally induced myopic eye growth, independent of its effects on eye size

    Selective breeding for susceptibility to myopia reveals a gene-environment interaction

    Get PDF
    Purpose. To test whether the interanimal variability in susceptibility to visually induced myopia is genetically determined. Methods. Monocular deprivation of sharp vision (DSV) was induced in outbred White Leghorn chicks aged 4 days. After 4 days' DSV, myopia susceptibility was quantified by the relative changes in axial length and refraction. Chicks in the extreme tails of the distribution of susceptibility to DSV were kept and paired for breeding (high- and low-susceptibility lines). A second round of selection was then performed. The third generation of chicks, derived from the selected parents, was assessed after either monocular DSV (4 or 10 days) or lens wear. Results. After two rounds of selective breeding, the chicks from the high-susceptibility line developed approximately twice as much myopia in response to 4 days' DSV as did those from the low-susceptibility line (P < 0.001). All ocular component dimensions differed significantly (P < 0.001) between the two selected lines, both before treatment and in the responses of the treated eye. When DSV was conducted for 10 days, the relative changes in axial length and refractive error were still significantly different between the high and low lines (P < 0.001). The chicks bred for high or low susceptibility to DSV also showed significantly different responses to minus lens wear, but not to plus lens wear. Additive genetic effects explained ∼50% of the interanimal variability in response to DSV. Conclusions. Genes and environment interact to shape refractive development in chicks

    A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions

    Get PDF
    Abstract Hyperspectral imaging is a technology that can be used to monitor plant responses to stress. Hyperspectral images have a full spectrum for each pixel in the image, 400–2500 nm in this case, giving detailed information about the spectral reflectance of the plant. Although this technology has been used in laboratory-based controlled lighting conditions for early detection of plant disease, the transfer of such technology to imaging plants in field conditions presents a number of challenges. These include problems caused by varying light levels and difficulties of separating the target plant from its background. Here we present an automated method that has been developed to segment raspberry plants from the background using a selected spectral ratio combined with edge detection. Graph theory was used to minimise a cost function to detect the continuous boundary between uninteresting plants and the area of interest. The method includes automatic detection of a known reflectance tile which was kept constantly within the field of view for all image scans. A method to split images containing rows of multiple raspberry plants into individual plants was also developed. Validation was carried out by comparison of plant height and density measurements with manually scored values. A reasonable correlation was found between these manual scores and measurements taken from the images (r2 = 0.75 for plant height). These preliminary steps are an essential requirement before detailed spectral analysis of the plants can be achieved

    Arabidopsis QTL analysis using stairs and gene expression

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping

    No full text
    The improvements in crop production needed to meet the increasing food demand in the 21st Century will rely on improved crop management and better crop varieties. In the last decade our ability to use genetics and genomics in crop science has been revolutionised, but these advances have not been matched by our ability to phenotype crops. As rapid and effective phenotyping is the basis of any large genetic study, there is an urgent need to utilise the recent advances in crop scale imaging to develop robust high-throughput phenotyping. This review discusses the use and adaptation of infra-red thermography (IRT) on crops as a phenotyping resource for both biotic and abiotic stresses. In particular, it addresses the complications caused by external factors such as environmental fluctuations and the difficulties caused by mixed pixels in the interpretation of IRT data and their effects on sensitivity and reproducibility for the detection of different stresses. Further, it highlights the improvements needed in using this technique for quantification of genetic variation and its integration with multiple sensor technology for development as a high-throughput and precise phenotyping approach for future crop breeding
    corecore