1,044 research outputs found
A Portable MEMS Gravimeter for the Detection of the Earth Tides
Gravimeters are used for measuring the local gravitational acceleration. The use of current commercially available gravimeters, however, has been limited by their high cost and large size. In this study, a microelectromechanical system (MEMS) based relative gravimeter with an acceleration sensitivity of 8 ÎŒGall / â (Hz) is demonstrated. The MEMS gravimeter, along with the custom interface electronics, is embedded on a battery powered portable platform. The portable platform enables continuous recording of the sensor response, while simultaneously measuring critical temperature and tilt parameters. To demonstrate the long-term stability of the system, the reported MEMS gravimeter platform was used to detect the Earth tides. In this paper, the first results from these measurements have been discussed
Thermodynamic gauge-theory cascade
It is proposed that the cooling of a thermalized SU() gauge theory can be
formulated in terms of a cascade involving three effective theories with
successively reduced (and spontaneously broken) gauge symmetries, SU()
U(1) Z. The approach is based on the assumption that away
from a phase transition the bulk of the quantum interaction inherent to the
system is implicitly encoded in the (incomplete) classical dynamics of a
collective part made of low-energy condensed degrees of freedom. The properties
of (some of the) statistically fluctuating fields are determined by these
condensate(s). This leads to a quasi-particle description at tree-level. It
appears that radiative corrections, which are sizable at large gauge coupling,
do not change the tree-level picture qualitatively. The thermodynamic
self-consistency of the quasi-particle approach implies nonperturbative
evolution equations for the associated masses. The temperature dependence of
these masses, in turn, determine the evolution of the gauge coupling(s). The
hot gauge system approaches the behavior of an ideal gas of massless gluons at
asymptotically large temperature. A negative equation of state is possible at a
stage where the system is about to settle into the phase of the (spontaneously
broken) Z symmetry.Comment: 25 pages, 6 figures, 1 reference added, minor corrections in text,
errors in Sec. 3.2 corrected, PRD versio
Metalâorganic framework nanosheets: programmable 2D materials for catalysis, sensing, electronics, and separation applications
Metal-organic framework nanosheets (MONs) have recently emerged as a distinct class of 2D materials with programmable structures that make them useful in diverse applications. In this review, the breadth of applications that have so far been investigated are surveyed, thanks to the distinct combination of properties afforded by MONs. How: 1) The high surface areas and readily accessible active sites of MONs mean they have been exploited for a variety of heterogeneous, photo-, and electro-catalytic applications; 2) their diverse surface chemistry and wide range of optical and electronic responses have been harnessed for the sensing of small molecules, biological molecules, and ions; 3) MONs tunable optoelectronic properties and nanoscopic dimensions have enabled them to be harnessed in light harvesting and emission, energy storage, and other electronic devices; 4) the anisotropic structure and porous nature of MONs mean they have shown great promise in a variety of gas separation and water purification applications; are discussed. The aim is to draw links between the uses of MONs in these different applications in order to highlight the common opportunities and challenges presented by this promising class of nanomaterials
ADHM/Nahm Construction of Localized Solitons in Noncommutative Gauge Theories
We study the relationship between ADHM/Nahm construction and ``solution
generating technique'' of BPS solitons in noncommutative gauge theories.
ADHM/Nahm construction and ``solution generating technique'' are the most
strong ways to construct exact BPS solitons. Localized solitons are the
solitons which are generated by the ``solution generating technique.'' The
shift operators which play crucial roles in ``solution generating technique''
naturally appear in ADHM/Nahm construction and we can construct various exact
localized solitons including new solitons: localized periodic instantons
(=localized calorons) and localized doubly-periodic instantons. Nahm
construction also gives rise to BPS fluxons straightforwardly from the
appropriate input Nahm data which is expected from the D-brane picture of BPS
fluxons. We also show that the Fourier-transformed soliton of the localized
caloron in the zero-period limit exactly coincides with the BPS fluxon.Comment: 30 pages, LaTeX, 3 figures; v3: minor changes, references added; v4:
references added, version to appear in PR
Diffusion of particles moving with constant speed
The propagation of light in a scattering medium is described as the motion of
a special kind of a Brownian particle on which the fluctuating forces act only
perpendicular to its velocity. This enforces strictly and dynamically the
constraint of constant speed of the photon in the medium. A Fokker-Planck
equation is derived for the probability distribution in the phase space
assuming the transverse fluctuating force to be a white noise. Analytic
expressions for the moments of the displacement along with an
approximate expression for the marginal probability distribution function
are obtained. Exact numerical solutions for the phase space
probability distribution for various geometries are presented. The results show
that the velocity distribution randomizes in a time of about eight times the
mean free time () only after which the diffusion approximation becomes
valid. This factor of eight is a well known experimental fact. A persistence
exponent of is calculated for this process in two dimensions
by studying the survival probability of the particle in a semi-infinite medium.
The case of a stochastic amplifying medium is also discussed.Comment: 9 pages, 9 figures(Submitted to Phys. Rev. E
Structural Properties of Self-Attracting Walks
Self-attracting walks (SATW) with attractive interaction u > 0 display a
swelling-collapse transition at a critical u_{\mathrm{c}} for dimensions d >=
2, analogous to the \Theta transition of polymers. We are interested in the
structure of the clusters generated by SATW below u_{\mathrm{c}} (swollen
walk), above u_{\mathrm{c}} (collapsed walk), and at u_{\mathrm{c}}, which can
be characterized by the fractal dimensions of the clusters d_{\mathrm{f}} and
their interface d_{\mathrm{I}}. Using scaling arguments and Monte Carlo
simulations, we find that for u<u_{\mathrm{c}}, the structures are in the
universality class of clusters generated by simple random walks. For
u>u_{\mathrm{c}}, the clusters are compact, i.e. d_{\mathrm{f}}=d and
d_{\mathrm{I}}=d-1. At u_{\mathrm{c}}, the SATW is in a new universality class.
The clusters are compact in both d=2 and d=3, but their interface is fractal:
d_{\mathrm{I}}=1.50\pm0.01 and 2.73\pm0.03 in d=2 and d=3, respectively. In
d=1, where the walk is collapsed for all u and no swelling-collapse transition
exists, we derive analytical expressions for the average number of visited
sites and the mean time to visit S sites.Comment: 15 pages, 8 postscript figures, submitted to Phys. Rev.
Strings between branes
D-brane configurations containing fundamental strings are constructed as
classical solutions of Yang-Mills theory. The fundamental strings in these
systems stretch between D-branes. In the case of D1-branes, this construction
gives smooth (classical) resolutions of string junctions and string networks.
Using a non-abelian Yang-Mills analysis of the string current, the string
charge density is computed and is shown to have support in the region between
the D-brane world-volumes. The 't Hooft-Polyakov monopole is analyzed using
similar methods, and is shown to contain D-strings whose flux has support off
the D-brane world-volume defined by the Higgs scalar field, when this field is
interpreted in terms of a transverse dimension. The constructions presented
here are used to give a qualitative picture of tachyon condensation in the
Yang-Mills limit, where fundamental strings and lower-dimensional D-branes
arise in a volume of space-time where brane-antibrane annihilation has
occurred.Comment: 35 pages, 16 eps figures, JHEP style; v2: a comment adde
Scalable and sustainable manufacturing of ultrathin metalâorganic framework nanosheets (MONs) for solar cell applications
Metal-organic framework nanosheets (MONs) are an emerging class of 2D materials whose tunable chemistry make them ideal for a wide range of sensing, catalytic, electronics and separation applications. However, creating scalable routes to the synthesis of high quality, ultrathin nanosheets remains challenging and little consideration has been given to the economics of making these materials. Here, we demonstrate a scalable synthesis of zinc-porphyrin based nanosheets, Zn2(H2TCPP), for use in organic solar cells and conduct a techno-economic analysis of their pilot-plant scale manufacture. A thorough investigation of the process chemistry of the solvothermal synthesis enabled reduction of reaction time, increased solid content and scale-up of the reaction in batch. Significantly, the addition of triethylamine accelerated the reaction kinetics, which enabled the synthesis temperature to be dropped from > 80 °C to room temperature. Application of these new reaction conditions in a continuous stirred-tank reactor directly formed monolayer MONs at 99 % yield with a spaceâtime yield of 16 kg mâ3 dayâ1, an approximately 20-fold increase in yield compared to adapting the literature procedure. Techno-economic analysis showed a 94 % reduction in the production costs compared to the literature reaction conditions and indicated that the production cost was dominated by ligand price. The general applicability of the method was demonstrated through synthesis of related Cu2(H2TCPP) MONs and tunability through metalation of the porphyrin units with six different metal ions. Finally, the value of the nanosheets was demonstrated through a near doubling in the power conversion efficiency of organic photovoltaic devices when the MONs were incorporated into the active layer. Overall, this work demonstrates the first scalable and sustainable route to producing monolayer nanosheets for high value applications
Resonant nonstationary amplification of polychromatic laser pulses and conical emission in an optically dense ensemble of neon metastable atoms
Experimental and numerical investigation of single-beam and pump-probe
interaction with a resonantly absorbing dense extended medium under strong and
weak field-matter coupling is presented. Significant probe beam amplification
and conical emission were observed. Under relatively weak pumping and high
medium density, when the condition of strong coupling between field and
resonant matter is fulfilled, the probe amplification spectrum has a form of
spectral doublet. Stronger pumping leads to the appearance of a single peak of
the probe beam amplification at the transition frequency. The greater probe
intensity results in an asymmetrical transmission spectrum with amplification
at the blue wing of the absorption line and attenuation at the red one. Under
high medium density, a broad band of amplification appears. Theoretical model
is based on the solution of the Maxwell-Bloch equations for a two-level system.
Different types of probe transmission spectra obtained are attributed to
complex dynamics of a coherent medium response to broadband polychromatic
radiation of a multimode dye laser.Comment: 9 pages, 13 figures, corrected, Fig.8 was changed, to be published in
Phys. Rev.
BAs and boride III-V alloys
Boron arsenide, the typically-ignored member of the III-V arsenide series
BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma
conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an
X_1c-like indirect band gap, and its bond charge is distributed almost equally
on the two atoms in the unit cell, exhibiting nearly perfect covalency. The
reasons for these are tracked down to the anomalously low atomic p orbital
energy in the boron and to the unusually strong s-s repulsion in BAs relative
to most other III-V compounds. We find unexpected valence band offsets of BAs
with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is
significantly higher than that of AlAs, despite the much smaller bond length of
BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects
result from the unusually strong mixing of the cation and anion states at the
VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and
composition-independent band gap bowing. This means that while addition of
small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of
boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the
conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing
enthalpies which are smaller than in GaN-GaAs alloys. The unique features of
boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for
publication in Phys. Rev. B. Scheduled to appear Oct. 15 200
- âŠ