68 research outputs found

    Atypical genomic cortical patterning in autism with poor early language outcome.

    Get PDF
    Cortical regionalization develops via genomic patterning along anterior-posterior (A-P) and dorsal-ventral (D-V) gradients. Here, we find that normative A-P and D-V genomic patterning of cortical surface area (SA) and thickness (CT), present in typically developing and autistic toddlers with good early language outcome, is absent in autistic toddlers with poor early language outcome. Autistic toddlers with poor early language outcome are instead specifically characterized by a secondary and independent genomic patterning effect on CT. Genes involved in these effects can be traced back to midgestational A-P and D-V gene expression gradients and different prenatal cell types (e.g., progenitor cells and excitatory neurons), are functionally important for vocal learning and human-specific evolution, and are prominent in prenatal coexpression networks enriched for high-penetrance autism risk genes. Autism with poor early language outcome may be explained by atypical genomic cortical patterning starting in prenatal development, which may detrimentally affect later regional functional specialization and circuit formation

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Pre-treatment clinical and gene expression patterns predict developmental change in early intervention in autism.

    Get PDF
    Funder: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)Early detection and intervention are believed to be key to facilitating better outcomes in children with autism, yet the impact of age at treatment start on the outcome is poorly understood. While clinical traits such as language ability have been shown to predict treatment outcome, whether or not and how information at the genomic level can predict treatment outcome is unknown. Leveraging a cohort of toddlers with autism who all received the same standardized intervention at a very young age and provided a blood sample, here we find that very early treatment engagement (i.e., <24 months) leads to greater gains while controlling for time in treatment. Pre-treatment clinical behavioral measures predict 21% of the variance in the rate of skill growth during early intervention. Pre-treatment blood leukocyte gene expression patterns also predict the rate of skill growth, accounting for 13% of the variance in treatment slopes. Results indicated that 295 genes can be prioritized as driving this effect. These treatment-relevant genes highly interact at the protein level, are enriched for differentially histone acetylated genes in autism postmortem cortical tissue, and are normatively highly expressed in a variety of subcortical and cortical areas important for social communication and language development. This work suggests that pre-treatment biological and clinical behavioral characteristics are important for predicting developmental change in the context of early intervention and that individualized pre-treatment biology related to histone acetylation may be key

    Global Developmental Gene Expression and Pathway Analysis of Normal Brain Development and Mouse Models of Human Neuronal Migration Defects

    Get PDF
    Heterozygous LIS1 mutations are the most common cause of human lissencephaly, a human neuronal migration defect, and DCX mutations are the most common cause of X-linked lissencephaly. LIS1 is part of a protein complex including NDEL1 and 14-3-3Δ that regulates dynein motor function and microtubule dynamics, while DCX stabilizes microtubules and cooperates with LIS1 during neuronal migration and neurogenesis. Targeted gene mutations of Lis1, Dcx, Ywhae (coding for 14-3-3Δ), and Ndel1 lead to neuronal migration defects in mouse and provide models of human lissencephaly, as well as aid the study of related neuro-developmental diseases. Here we investigated the developing brain of these four mutants and wild-type mice using expression microarrays, bioinformatic analyses, and in vivo/in vitro experiments to address whether mutations in different members of the LIS1 neuronal migration complex lead to similar and/or distinct global gene expression alterations. Consistent with the overall successful development of the mutant brains, unsupervised clustering and co-expression analysis suggested that cell cycle and synaptogenesis genes are similarly expressed and co-regulated in WT and mutant brains in a time-dependent fashion. By contrast, focused co-expression analysis in the Lis1 and Ndel1 mutants uncovered substantial differences in the correlation among pathways. Differential expression analysis revealed that cell cycle, cell adhesion, and cytoskeleton organization pathways are commonly altered in all mutants, while synaptogenesis, cell morphology, and inflammation/immune response are specifically altered in one or more mutants. We found several commonly dysregulated genes located within pathogenic deletion/duplication regions, which represent novel candidates of human mental retardation and neurocognitive disabilities. Our analysis suggests that gene expression and pathway analysis in mouse models of a similar disorder or within a common pathway can be used to define novel candidates for related human diseases

    Allelic prevalence and geographic distribution of cerebrotendinous xanthomatosis

    No full text
    Abstract Background Cerebrotendinous xanthomatosis (CTX) is a rare recessive genetic disease characterized by disruption of bile acid synthesis due to inactivation of the CYP27A1 gene. Treatment is available in the form of bile acid replacement. CTX is likely underdiagnosed, and prevalence estimates based on case diagnosis are probably inaccurate. Large population-based genomic databases are a valuable resource to estimate prevalence of rare recessive diseases as an orthogonal unbiased approach building upon traditional epidemiological studies. Methods We leveraged the Hardy–Weinberg principle and allele frequencies from gnomAD to calculate CTX prevalence. ClinVar and HGMD were used to identify high-confidence pathogenic missense variants and to calculate a disease-specific cutoff. Variant pathogenicity was also assessed by the VarSome implementation of the ACMG/AMP algorithm and the REVEL in silico predictor. Results CTX prevalence estimates were highest in Asians (1:44,407–93,084) and lowest in the Finnish population (1:3,388,767). Intermediate estimates were found in Europeans, Americans, and Africans/African Americans (1:70,795–233,597). The REVEL-predicted pathogenic variants accounted for a greater increase in prevalence estimates for Europeans, Americans, and Africans/African Americans compared with Asians. We identified the most frequent alleles designated pathogenic in ClinVar (p.Gly472Ala, p.Arg395Cys), labeled pathogenic based on sequence consequence (p.Met1?), and predicted to be pathogenic by REVEL (p.Met383Lys, p.Arg448His) across populations. Also, we provide a prospective geographic map of estimated disease distribution based on CYP27A1 variation queries performed by healthcare providers from selected specialties. Conclusions Prevalence estimates calculated herein support and expand upon existing evidence indicating underdiagnosis of CTX, suggesting that improved detection strategies are needed. Increased awareness of CTX is important for early diagnosis, which is essential for patients as early treatment significantly slows or prevents disease progression

    A 2.3 Mb duplication of chromosome 8q24.3 associated with severe mental retardation and epilepsy detected standard karyotype.

    No full text
    Chromosome duplications are found in about 2% of subjects with a typical chromosomal phenotype but their frequency is likely to be higher, as suggested by the first array-CGH data. According to the orientation of the duplicated segment, duplications may be in tandem or inverted. The latter are usually associated with a distal deletion. We studied a de novo 2.3 Mb inverted duplication of 8q24.3 without apparently associated deletion in a subject with profound psychomotor retardation, idiopathic epilepsy and growth delay. In spite of its small size, the presence of the rearrangement was suspected on standard karyotypes ( approximately 400 bands) and later confirmed by Fluorescent in situ hybridization ( FISH) analysis. We hypothesize that the GRINA gene, a glutamate binding subunit of NMDA receptor ion channel lying within the duplicated segment, may be responsible for the epilepsy. This paper confirms that small subtelomeric de novo duplications may be responsible for mental retardation, facial dysmorphisms and/or congenital malformations, although their presence may be overlooked by FISH analysis
    • 

    corecore