2,183 research outputs found
Configuring Airspace Sectors with Approximate Dynamic Programming
In response to changing traffic and staffing conditions, supervisors dynamically configure airspace sectors by assigning them to control positions. A finite horizon airspace sector configuration problem models this supervisor decision. The problem is to select an airspace configuration at each time step while considering a workload cost, a reconfiguration cost, and a constraint on the number of control positions at each time step. Three algorithms for this problem are proposed and evaluated: a myopic heuristic, an exact dynamic programming algorithm, and a rollouts approximate dynamic programming algorithm. On problem instances from current operations with only dozens of possible configurations, an exact dynamic programming solution gives the optimal cost value. The rollouts algorithm achieves costs within 2% of optimal for these instances, on average. For larger problem instances that are representative of future operations and have thousands of possible configurations, excessive computation time prohibits the use of exact dynamic programming. On such problem instances, the rollouts algorithm reduces the cost achieved by the heuristic by more than 15% on average with an acceptable computation time
Joule heating as a technique for obtaining uncoupled soft and hard magnetic phases in a Finemet alloy
A detailed study on the microstructural evolution of the Fe73.9Cu0.9Nb3.1Si13.2B8.9 Finemet alloy
upon Joule heating and its correlation with the magnetic properties is reported. Mössbauer
spectroscopy suggests the coexistence of soft nonstoichiometric Fe3Si and hard iron boride magnetic
phases. The uncoupled magnetic character of these phases is evidenced by dc-hysteresis loop
measurements. X-ray diffraction results display an excellent agreement with the magnetic
characterization. The magnetic contribution of the soft phase has been decreased from 70% to 10%
with increasing annealing current and time. The switching field value for the soft magnetic phase is
50 A/m, which is very less as compared to 2000 A/m, for the hard magnetic phase. Existence of
uncoupled soft and hard magnetic phases makes these systems suitable for use as magnetic labels
Instruction-Level Abstraction (ILA): A Uniform Specification for System-on-Chip (SoC) Verification
Modern Systems-on-Chip (SoC) designs are increasingly heterogeneous and
contain specialized semi-programmable accelerators in addition to programmable
processors. In contrast to the pre-accelerator era, when the ISA played an
important role in verification by enabling a clean separation of concerns
between software and hardware, verification of these "accelerator-rich" SoCs
presents new challenges. From the perspective of hardware designers, there is a
lack of a common framework for the formal functional specification of
accelerator behavior. From the perspective of software developers, there exists
no unified framework for reasoning about software/hardware interactions of
programs that interact with accelerators. This paper addresses these challenges
by providing a formal specification and high-level abstraction for accelerator
functional behavior. It formalizes the concept of an Instruction Level
Abstraction (ILA), developed informally in our previous work, and shows its
application in modeling and verification of accelerators. This formal ILA
extends the familiar notion of instructions to accelerators and provides a
uniform, modular, and hierarchical abstraction for modeling software-visible
behavior of both accelerators and programmable processors. We demonstrate the
applicability of the ILA through several case studies of accelerators (for
image processing, machine learning, and cryptography), and a general-purpose
processor (RISC-V). We show how the ILA model facilitates equivalence checking
between two ILAs, and between an ILA and its hardware finite-state machine
(FSM) implementation. Further, this equivalence checking supports accelerator
upgrades using the notion of ILA compatibility, similar to processor upgrades
using ISA compatibility.Comment: 24 pages, 3 figures, 3 table
Benefits Assessment of Algorithmically Combining Generic High Altitude Airspace Sectors
In today's air traffic control operations, sectors that have traffic demand below capacity are combined so that fewer controller teams are required to manage air traffic. Controllers in current operations are certified to control a group of six to eight sectors, known as an area of specialization. Sector combinations are restricted to occur within areas of specialization. Since there are few sector combination possibilities in each area of specialization, human supervisors can effectively make sector combination decisions. In the future, automation and procedures will allow any appropriately trained controller to control any of a large set of generic sectors. The primary benefit of this will be increased controller staffing flexibility. Generic sectors will also allow more options for combining sectors, making sector combination decisions difficult for human supervisors. A sector-combining algorithm can assist supervisors as they make generic sector combination decisions. A heuristic algorithm for combining under-utilized air space sectors to conserve air traffic control resources has been described and analyzed. Analysis of the algorithm and comparisons with operational sector combinations indicate that this algorithm could more efficiently utilize air traffic control resources than current sector combinations. This paper investigates the benefits of using the sector-combining algorithm proposed in previous research to combine high altitude generic airspace sectors. Simulations are conducted in which all the high altitude sectors in a center are allowed to combine, as will be possible in generic high altitude airspace. Furthermore, the algorithm is adjusted to use a version of the simplified dynamic density (SDD) workload metric that has been modified to account for workload reductions due to automatic handoffs and Automatic Dependent Surveillance Broadcast (ADS-B). This modified metric is referred to here as future simplified dynamic density (FSDD). Finally, traffic demand sets with increased air traffic demand are used in the simulations to capture the expected growth in air traffic demand by the mid-term
ProAlgaZyme subfraction improves the lipoprotein profile of hypercholesterolemic hamsters, while inhibiting production of betaine, carnitine, and choline metabolites
BACKGROUND: Previously, we reported that ProAlgaZyme (PAZ) and its biologically active fraction improved plasma lipids in hypercholesterolemic hamsters, by significantly increasing the high density lipoprotein cholesterol (HDL-C) while reducing non-HDL cholesterol and the ratio of total cholesterol/HDL-C. Moreover, hepatic mRNA expression of genes involved in HDL/reverse cholesterol transport were significantly increased, while cholesteryl ester transfer protein (CETP) expression was partially inhibited. In the current study, we investigated the therapeutic efficacy of the biologically active fraction of PAZ (BaP) on the plasma lipid and plasma metabolomic profiles in diet induced hypercholesterolemic hamsters. METHODS: Fifty male Golden Syrian hamsters were fed a high fat diet for 4 weeks prior to randomization into 6 groups, based on the number of days they received subsequent treatment. Thus animals in T0, T3, T7, T10, T14, and T21 groups received BaP for 0, 3, 7, 10, 14, and 21 days, respectively, as their drinking fluid. Plasma lipids were assayed enzymatically, while real-time reverse transcriptase polymerase chain reaction (RT-PCR) provided the transcription levels of the Apolipoprotein (Apo) A1 gene. The plasma metabolomic profile was determined using (1)H nuclear magnetic resonance (NMR) spectroscopy in conjunction with multivariate analysis. RESULTS: Plasma HDL-C was significantly increased in T3 (P < 0.05) and T21 (P < 0.001), while non-HDL cholesterol was significantly reduced in T3, T7, T10 (P < 0.001) and T14, T21 (P < 0.01). Moreover, the ratio of total cholesterol/HDL-C was significantly lower in all BaP treated groups (P < 0.001) as compared with T0. Quantitative RT-PCR showed an increase in Apo A1 expression in T10 (3-fold) and T21 (6-fold) groups. NMR data followed by multivariate analysis showed a clear separation between T0 and T21 groups, indicating a difference in their metabolomic profiles. Plasma concentrations of metabolites associated with a risk for atherosclerosis and cardiovascular disease, including choline, phosphocholine, glycerol-phosphocholine, betaine and carnitine metabolites were significantly lower in the T21 group. CONCLUSION: Treatment with BaP significantly improved the plasma lipid profile by increasing HDL-C and lowering non-HDL cholesterol. In addition, BaP potentially improved the plasma metabolomic profile by reducing the concentration of key metabolites associated with risk for atherosclerosis and cardiovascular disease
- …
