76 research outputs found

    Positive Impact of Similarity on Twice Single Seed Descent of Purification on Bambara Groundnut (Vigna Subterranea L. Verdcourt)

    Full text link
    The main problem of local line Bambara groundnut (Vigna subterranea L. Verdcourt) genotype improving is the low of purity. The research on genetic purification of Bambara groundnut had finished in twice single seed descent. The objective of this research was to find out the uniformity gain level within lines each other after single seed descent applied twice. This research was conducted in Agriculture Research Station, Universitas Brawijaya, from 2014 to 2016. There were 20 selected local lines evaluated twice with single seed descent method. On the first and second evaluation, it was applied on previous 19 local lines and 1 check genotype. Similarity coefficient was analyzed with cluster analysis of qualitative characters within lines. Variability within line was described on quantitative characters. The local lines had different response on single seed descent selection. These differences depended on genetic of qualitative characters. On the first single seed descent, it got similarity coefficient of 0.704-0.832. On the second one, it got similarity coefficient of 0.804-1.00. Increasing of similarity coefficient from 0.10-0.168 will improve purification of local lines 15.76-20.19 %. Two circles of single seed descent selection were capable to purify local lines. Variability of quantitative character depended on kind of character

    Qtls Controlling Seed Weight and Days to Flowering in Mungbean [Vigna Radiata (L.) Wilczek], Their Conservation in Azuki Bean [V. Angularis (Ohwi) Ohwi & Ohashi] and Rice Bean [V. Umbellata (Thunb.) Ohwi & Ohashi]

    Full text link
    Mungbean (Vigna radiata (L.) Wilczek) is a socio-economically important legume crop of Asia. Varieties with large seed size and early maturity are preferred in commercial production. In this study, we identified quantitative trait loci (QTL) controlling seed weight and days to flowering in mungbean. The mapping population comprises 155 F2-derived lines from a cross between Kamphaeng Saen 1 (large-seeded and early flowering) and V4718 (small-seeded and late flowering). The F2 population was analyzed with 67 simple sequence repeat markers. The F2:3 families were evaluated for 100-seed weigh and days to flowering in two years, 2008 (one season) and 2011 (two seasons). Composite interval mapping identified six QTLs for 100-seed weight and 5 QTLs for days to flowering. Three genomic regions harbored QTLs for both seed weight and days to flowering, revealing association between the two traits. Comparison of QTLs for both traits found in this study with those reported in azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and rice bean (Vigna umbellata (Thunb.) Ohwi & Ohashi) revealed that several QTLs are conserved among the three Vigna species

    Dissecting Quantitative Trait Loci for Agronomic Traits Responding to Iron Deficeincy in Mungbean [Vigna Radiata (L.) Wilczek]

    Full text link
    Calcareous soil is prevalent in many areas of the world agricultural land causing substantial yield loss of crops. We previously identified two quantitative trait locus (QTL) qIDC3.1 and qIDC2.1 controlling leaf chlorosis in mungbean grown in calcareous soil in two years (2010 and 2011) using visual score and SPAD measurement in a RIL population derived from KPS2 (susceptible) and NM10-12-1 (resistant). The two QTLs together accounted for 50% of the total leaf chlorosis variation and only qIDC3.1 was confirmed, although heritability estimated for the traits was as high as 91.96%. In this study, we detected QTLs associated with days to flowering , plant height, number of pods per plants, number of seeds per pods, and seed yield per plants in the same population grown under the same environment with the aim to identify additional QTLs controlling resistance to calcareous soil in mungbean. Single marker analysis revealed 18 simple sequence repeat markers, while composite interval mapping identified 33 QTLs on six linkage groups (1A, 2, 3, 4, 5 and 9) controlling the five agronomic traits. QTL cluster on LG 3 coincided with the position of qIDC3.1, while QTL cluster on LG 2 was not far from qIDC2.1. The results confirmed the importance of qIDC3.1 and qIDC2.1 and revealed four new QTLs for the resistance to calcareous soil

    Mapping QTL for bruchid resistance in rice bean (Vigna umbellata)

    Get PDF
    This research articles was published in Euphytica journal, volume 207, 2016The damage caused to stored seed by bruchids (Callosobruchus maculatus) is considered to be a major production constraint in rice bean (Vigna umbellata). Breeding for genetically determined resistance is the most environmentally benign and cost-effective means to mitigate the losses to bruchid infestation. Here, a screen of rice bean germplasm identified two sources of resistance, and determined the genetic basis of the resistance using a quantitative trait locus (QTL) mapping approach. The two resistant accessions (LRB238 and JP100304) were each crossed to a common susceptible cultivar (LRB26) to generate F2 mapping populations, one of which (LRB238 × LRB26) was genotyped with a range of Vigna sp. microsatellite assays and by sequence related amplified polymorphism (SRAP) fingerprinting. The resulting linkage map comprised ten linkage groups and covered a genetic distance of 872.1 cM with a mean inter-marker distance of 32.05 cM. The subsequent QTL analysis detected the presence of 11 QTL, distributed over all ten linkage groups, most of which were associated with the % damage caused to the seed. Two major QTL, Cmpd1.5 (flanked by the SRAP markers E2M9-270 and E12M7-311) and Cmpd1.6 (flanked by the SRAP marker E7M10-141 and the microsatellite locus CEDG259) mapped within 11.9 cM and 13.0 cM of the flanking markers, respectively, accounted for, 67.3 and 77.4 % of the variance respectively, for % damaged seeds. A bulked segregation analysis carried out in the JP100304 × LRB26 population revealed that the resistance donor harboured some resistance factors not represented in LRB238

    Positive Impact of Similarity on Twice Single Seed Descent of Purification on Bambara Groundnut (Vigna subterranea L. Verdcourt)

    No full text
    The main problem of local line Bambara groundnut (Vigna subterranea L. Verdcourt) genotype improving is the low of purity. The research on genetic purification of Bambara groundnut had finished in twice single seed descent. The objective of this research was to find out the uniformity gain level within lines each other after single seed descent applied twice. This research was conducted in Agriculture Research Station, Universitas Brawijaya, from 2014 to 2016. There were 20 selected local lines evaluated twice with single seed descent method. On the first and second evaluation, it was applied on previous 19 local lines and 1 check genotype. Similarity coefficient was analyzed with cluster analysis of qualitative characters within lines. Variability within line was described on quantitative characters. The local lines had different response on single seed descent selection. These differences depended on genetic of qualitative characters. On the first single seed descent, it got similarity coefficient of 0.704-0.832. On the second one, it got similarity coefficient of 0.804-1.00. Increasing of similarity coefficient from 0.10-0.168 will improve purification of local lines 15.76-20.19 %. Two circles of single seed descent selection were capable to purify local lines. Variability of quantitative character depended on kind of character

    Novel Alleles of Two Tightly Linked Genes Encoding Polygalacturonase-Inhibiting Proteins (VrPGIP1 and VrPGIP2) Associated with the Br Locus That Confer Bruchid (Callosobruchus spp.) Resistance to Mungbean (Vigna radiata) Accession V2709

    No full text
    Nearly all mungbean cultivars are completely susceptible to seed bruchids (Callosobruchus chinensis and Callosobruchus maculatus). Breeding bruchid-resistant mungbean is a major goal in mungbean breeding programs. Recently, we demonstrated in mungbean (Vigna radiata) accession V2802 that VrPGIP2, which encodes a polygalacturonase inhibiting protein (PGIP), is the Br locus responsible for resistance to C. chinensis and C. maculatus. In this study, mapping in mungbean accession V2709 using a BC11F2 population of 355 individuals revealed that a single major quantitative trait locus, which controlled resistance to both C. chinensis and C. maculatus, was located in a 237.35 Kb region of mungbean chromosome 5 that contained eight annotated genes, including VrPGIP1 (LOC106760236) and VrPGIP2 (LOC106760237). VrPGIP1 and VrPGIP2 are located next to each other and are only 27.56 Kb apart. Sequencing VrPGIP1 and VrPGIP2 in “V2709” revealed new alleles for both VrPGIP1 and VrPGIP2, named VrPGIP1-1 and VrPGIP2-2, respectively. VrPGIP2-2 has one single nucleotide polymorphism (SNP) at position 554 of wild type VrPGIP2. This SNP is a guanine to cystine substitution and causes a proline to arginine change at residue 185 in the VrPGIP2 of “V2709”. VrPGIP1-1 has 43 SNPs compared with wild type and “V2802”, and 20 cause amino acid changes in VrPGIP1. One change is threonine to proline at residue 185 in VrPGIP1, which is the same as in VrPGIP2. Sequence alignments of VrPGIP2 and VrPGIP1 from “V2709” with common bean (Phaseolus vulgaris) PGIP2 revealed that residue 185 in VrPGIP2 and VrPGIP1 contributes to the secondary structures of proteins that affect interactions between PGIP and polygalacturonase, and that some amino acid changes in VrPGIP1 also affect interactions between PGIP and polygalacturonase. Thus, tightly linked VrPGIP1 and VrPGIP2 are the likely genes at the Br locus that confer bruchid resistance in mungbean “V2709”

    Narrowing Down a Major QTL Region Conferring Pod Fiber Contents in Yardlong Bean (Vigna unguiculata), a Vegetable Cowpea

    No full text
    Yardlong bean (Vigna unguiculata (L.) Walp. ssp. sesquipedalis), a subgroup of cowpea, is an important vegetable legume crop of Asia where its young pods are consumed in both fresh and cooked forms. Pod fiber contents (cellulose, hemicellulose and lignin) correlates with pod tenderness (softness/hardness) and pod shattering. In a previous study using populations derived from crosses between yardlong bean and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea), three major quantitative trait loci (QTLs), qCel7.1, qHem7.1 and qLig7.1, controlling these fibers were identified on linkage group 7 (cowpea chromosome 5) and are co-located with QTLs for pod tenderness and pod shattering. The objective of this study was to identify candidate gene(s) controlling the pod fiber contents. Fine mapping for qCel7.1, qHem7.1 and qLig7.1 was conducted using F2 and F2:3 populations of 309 and 334 individuals, respectively, from the same cross combination. New DNA markers were developed from cowpea reference genome sequence and used for fine mapping. A QTL analysis showed that in most cases, each pod fiber content was controlled by one major and one minor QTLs on the LG7. The major QTLs for cellulose, hemicellulose and lignin in pod were always mapped to the same regions or close to each other. In addition, a major QTL for pod shattering was also located in the region. Although there were several annotated genes relating to pod fiber contents in the region, two genes including Vigun05g266600 (VuBGLU12) encoding a beta glucosidase and Vigun05g273500 (VuMYB26b) encoding a transcription factor MYB26 were identified as candidate genes for the pod fiber contents and pod shattering. Function(s) of these genes in relation to pod wall fiber biosynthesis and pod shattering was discussed

    QTLs CONTROLLING SEED WEIGHT AND DAYS TO FLOWERING IN MUNGBEAN [Vigna radiata (L.) Wilczek], THEIR CONSERVATION IN AZUKI BEAN [V. angularis (Ohwi) Ohwi & Ohashi] AND RICE BEAN [V. umbellata (Thunb.) Ohwi & Ohashi]

    No full text
    Mungbean (Vigna radiata (L.) Wilczek) is a socio-economically important legume crop of Asia. Varieties with large seed size and early maturity are preferred in commercial production. This study was to identify quantitative trait loci (QTL) controlling seed weight and days to flowering in mungbean. The mapping population comprises 155 F2-derived lines from a cross between Kamphaeng Saen 1 (large-seeded and early flowering) and V4718 (small-seeded and late flowering). The F2 population was analyzed with 67 simple sequence repeat markers. The F2:3 families were evaluated for 100-seed weigh and days to flowering in two years, 2008 (one season) and 2011 (two seasons). Composite interval mapping identified six QTLs for 100-seed weight and 5 QTLs for days to flowering. Three genomic regions harbored QTLs for both seed weight and days to flowering, revealing association between the two traits. Comparison of QTLs for both traits found in this study with those reported in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi] and rice bean [Vigna umbellata (Thunb.) Ohwi & Ohashi] revealed that several QTLs are conserved among the three Vigna species

    DISSECTING QUANTITATIVE TRAIT LOCI FOR AGRONOMIC TRAITS RESPONDING TO IRON DEFICEINCY IN MUNGBEAN [Vigna radiata (L.) Wilczek]

    No full text
    Calcareous soil is prevalent in many areas of the world agricultural land causing substantial yield loss of crops. We previously identified two quantitative trait locus (QTL) qIDC3.1 and qIDC2.1 controlling leaf chlorosis in mungbean grown in calcareous soil in two years (2010 and 2011) using visual score and SPAD measurement in a RIL population derived from KPS2 (susceptible) and NM10-12-1 (resistant). The two QTLs together accounted for 50% of the total leaf chlorosis variation and only qIDC3.1 was confirmed, although heritability estimated for the traits was as high as 91.96%. In this study, we detected QTLs associated with days to flowering , plant height, number of pods per plants, number of seeds per pods, and seed yield per plants in the same population grown under the same environment with the aim to identify additional QTLs controlling resistance to calcareous soil in mungbean. Single marker analysis revealed 18 simple sequence repeat markers, while composite interval mapping identified 33 QTLs on six linkage groups (1A, 2, 3, 4, 5 and 9) controlling the five agronomic traits. QTL cluster on LG 3 coincided with the position of qIDC3.1, while QTL cluster on LG 2 was not far from qIDC2.1. The results confirmed the importance of qIDC3.1 and qIDC2.1 and revealed four new QTLs for the resistance to calcareous soil
    corecore