5,190 research outputs found

    Muons and emissivities of neutrinos in neutron star cores

    Get PDF
    In this work we consider the role of muons in various URCA processes relevant for neutrino emissions in the core region of neutron stars. The calculations are done for β\beta--stable nuclear matter with and without muons. We find muons to appear at densities ρ=0.15\rho = 0.15 fm3^{-3}, slightly around the saturation density for nuclear matter ρ0=0.16\rho_0 =0.16 fm3^{-3}. The direct URCA processes for nucleons are forbidden for densities below ρ=0.5\rho = 0.5 fm3^{-3}, however the modified URCA processes with muons (n+Np+N+μ+νμ,p+N+μn+N+νμ(n+N\rightarrow p+N +\mu +\overline{\nu}_{\mu}, p+N+\mu \rightarrow n+N+\nu_{\mu}), where NN is a nucleon, result in neutrino emissivities comparable to those from (n+Np+N+e+νe,p+N+en+N+νe(n+N\rightarrow p+N +e +\overline{\nu}_e, p+N+e \rightarrow n+N+\nu_e). This opens up for further possibilities to explain the rapid cooling of neutrons stars. Superconducting protons reduce however these emissivities at densities below 0.40.4 fm3^{-3}.Comment: 14 pages, Revtex style, 3 uuencoded figs include

    A domain of spacetime intervals in general relativity

    Get PDF
    Beginning from only a countable dense set of events and the causality relation, it is possible to reconstruct a globally hyperbolic spacetime in a purely order theoretic manner. The ultimate reason for this is that globally hyperbolic spacetimes belong to a category that is equivalent to a special category of domains called interval domains.Comment: 25 page

    Isospin Fluctuations in QCD and Relativistic Heavy-Ion Collisions

    Get PDF
    We address the role of fluctuations in strongly interacting matter during the dense stages of a heavy-ion collision through its electromagnetic emission. Fluctuations of isospin charge are considered in a thermal system at rest as well as in a moving hadronic fluid at fixed proper time within a finite bin of pseudo-rapidity. In the former case, we use general thermodynamic relations to establish a connection between fluctuations and the space-like screening limit of the retarded photon self-energy, which directly relates to the emissivities of dileptons and photons. Effects of hadronic interactions are highlighted through two illustrative calculations. In the latter case, we show that a finite time scale τ\tau inherent in the evolution of a heavy-ion collision implies that equilibrium fluctuations involve both space-like and time-like components of the photon self-energy in the system. Our study of non-thermal effects, explored here through a stochastic treatment, shows that an early and large fluctuation in isospin survives only if it is accompanied by a large temperature fluctuation at freeze-out, an unlikely scenario in hadronic phases with large heat capacity. We point out prospects for the future which include: (1) A determination of the Debye mass of the system at the dilute freeze-out stage of a heavy-ion collision, and (2) A delineation of the role of charge fluctuations during the dense stages of the collision through a study of electromagnetic emissivities.Comment: 12 pages ReVTeX incl. 4 ps-fig

    Multipair contributions to the spin response of nuclear matter

    Get PDF
    We analyse the effect of non-central forces on the magnetic susceptibility of degenerate Fermi systems. These include the presence of contributions from transitions to states containing more than one quasiparticle-quasihole pair, which cannot be calculated within the framework of Landau Fermi-liquid theory, and renormalization of the quasiparticle magnetic moment, as well as explicit non-central contributions to the quasiparticle interaction. Consequently, the relationship between the Landau parameters and the magnetic susceptibility for Fermi systems with non-central forces is considerably more complicated than for systems with central forces. We use sum-rule arguments to place a lower bound on the contribution to the static susceptibility coming from transitions to multipair states

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Critical exponents in Ising spin glasses

    Full text link
    We determine accurate values of ordering temperatures and critical exponents for Ising Spin Glass transitions in dimension 4, using a combination of finite size scaling and non-equilibrium scaling techniques. We find that the exponents η\eta and zz vary with the form of the interaction distribution, indicating non-universality at Ising spin glass transitions. These results confirm conclusions drawn from numerical data for dimension 3.Comment: 6 pages, RevTeX (or Latex, etc), 10 figures, Submitted to PR

    Interpretation and the Constraints on International Courts

    Get PDF
    This paper argues that methodologies of interpretation do not do what they promise – they do not constrain interpretation by providing neutral steps that one can follow in finding out a meaning of a text – but nevertheless do their constraining work by being part of what can be described as the legal practice

    Neutrino collective excitations in the Standard Model at high temperature

    Full text link
    Neutrino collective excitations are studied in the Standard Model at high temperatures below the symmetry breaking scale. Two parameters determine the properties of the collective excitations: a mass scale mν=gT/4m_\nu=gT/4 which determines the \emph{chirally symmetric} gaps in the spectrum and Δ=MW2(T)/2mνT\Delta=M^2_W(T)/2m_\nu T. The spectrum consists of left handed negative helicity quasiparticles, left handed positive helicity quasiholes and their respective antiparticles. For Δ<Δc=1.275...\Delta < \Delta_c = 1.275... there are two gapped quasiparticle branches and one gapless and two gapped quasihole branches, all but the higher gapped quasiparticle branches terminate at end points. For Δc<Δ<π/2\Delta_c < \Delta < \pi/2 the quasiparticle spectrum features a pitchfork bifurcation and for Δ>π/2\Delta >\pi/2 the collective modes are gapless quasiparticles with dispersion relation below the light cone for kmνk\ll m_\nu approaching the free field limit for kmνk\gg m_\nu with a rapid crossover between the soft non-perturbative to the hard perturbative regimes for kmνk\sim m_\nu.The \emph{decay} of the vector bosons leads to a \emph{width} of the collective excitations of order g2g^2 which is explicitly obtained in the limits k=0k =0 and kmνΔk\gg m_\nu \Delta. At high temperature this damping rate is shown to be competitive with or larger than the collisional damping rate of order GF2G^2_F for a wide range of neutrino energy.Comment: 32 pages 16 figs. Discussion on screening corrections. Results unchanged to appear in Phys. Rev.

    A Workshop on Disability Inclusive Remote Co-Design

    Get PDF
    The COVID-19 pandemic forced researchers to find new ways to continue research, as universities and laboratories experienced closure due to nationwide lockdowns in many countries worldwide, including conducting experiments, workshops, and ethnographic work online. While this had a significant impact on the majority of research work across SIGCHI, research relating to disability and ageing was most impacted due to the additional challenges of recruiting participants, finding accessible online platforms, and ensuring seamless participation while juggling platform accessibility issues, facilitation, and supporting participants' needs. These challenges were more extreme for disabled researchers. In this workshop, we aim to bring together researchers, designers, and practitioners to explore effective strategies and brainstorm actionable guidelines for supporting disability inclusive online research methods and platforms

    Real Time Correlators in Hot (2+1)d QCD

    Get PDF
    We use dimensional reduction techniques to relate real time finite T correlation functions in (2+1) dimensional QCD to bound state parameters in a generalized 't Hooft model with an infinite number of heavy quark and adjoint scalar fields. While static susceptibilities and correlation functions of the DeTar type can be calculated using only the light (static) gluonic modes, the dynamical correlators require the inclusion of the heavy modes. In particular we demonstrate that the leading T perturbative result can be understood in terms of the bound states of the 2d model and that consistency requires bound state trajectories composed of both quarks and adjoint scalars. We also propose a non-perturbative expression for the dynamical DeTar correlators at small spatial momenta.Comment: 21 pages, Latex, uses axodra
    corecore