7 research outputs found

    Pressure and Flow Properties of Cannulae for Extracorporeal Membrane Oxygenation II: Drainage (Venous) Cannulae

    Get PDF
    The use of extracorporeal life support devices such as extracorporeal membrane oxygenation in adults requires cannulation of the patient's vessels with comparatively large diameter cannulae to allow circulation of large volumes of blood (>5 L/min). The cannula diameter and length are the major determinants for extracorporeal membrane oxygenation flow. Manufacturing companies present pressure-flow charts for the cannulae; however, these tests are performed with water. Aims of this study were 1. to investigate the specified pressure-flow charts obtained when using human blood as the circulating medium and 2. to support extracorporeal membrane oxygenation providers with pressure-flow data for correct choice of the cannula to reach an optimal flow with optimal hydrodynamic performance. Eighteen extracorporeal membrane oxygenation drainage cannulae, donated by the manufacturers (n = 6), were studied in a centrifugal pump driven mock loop. Pressure-flow properties and cannula features were described. The results showed that when blood with a hematocrit of 27% was used, the drainage pressure was consistently higher for a given flow (range 10%-350%) than when water was used (data from each respective manufacturer's product information). It is concluded that the information provided by manufacturers in line with regulatory guidelines does not correspond to clinical performance and therefore may not provide the best guidance for clinicians.info:eu-repo/semantics/publishedVersio

    Pressure and Flow Properties of Cannulae for Extracorporeal Membrane Oxygenation I: Return (Arterial) Cannulae

    Get PDF
    Adequate extracorporeal membrane oxygenation support in the adult requires cannulae permitting blood flows up to 6-8 L/minute. In accordance with Poiseuille's law, flow is proportional to the fourth power of cannula inner diameter and inversely proportional to its length. Poiseuille's law can be applied to obtain the pressure drop of an incompressible, Newtonian fluid (such as water) flowing in a cylindrical tube. However, as blood is a pseudoplastic non-Newtonian fluid, the validity of Poiseuille's law is questionable for prediction of cannula properties in clinical practice. Pressure-flow charts with non-Newtonian fluids, such as blood, are typically not provided by the manufacturers. A standardized laboratory test of return (arterial) cannulae for extracorporeal membrane oxygenation was performed. The aim was to determine pressure-flow data with human whole blood in addition to manufacturers' water tests to facilitate an appropriate choice of cannula for the desired flow range. In total, 14 cannulae from three manufacturers were tested. Data concerning design, characteristics, and performance were graphically presented for each tested cannula. Measured blood flows were in most cases 3-21% lower than those provided by manufacturers. This was most pronounced in the narrow cannulae (15-17 Fr) where the reduction ranged from 27% to 40% at low flows and 5-15% in the upper flow range. These differences were less apparent with increasing cannula diameter. There was a marked disparity between manufacturers. Based on the measured results, testing of cannulae including whole blood flows in a standardized bench test would be recommended.info:eu-repo/semantics/publishedVersio

    Hydrodynamic alignment and assembly of nanofibrils resulting in strong cellulose filaments

    Get PDF
    Cellulose nanofibrils can be obtained from trees and have considerable potential as a building block for biobased materials. In order to achieve good properties of these materials, the nanostructure must be controlled. Here we present a process combining hydrodynamic alignment with a dispersion–gel transition that produces homogeneous and smooth filaments from a low-concentration dispersion of cellulose nanofibrils in water. The preferential fibril orientation along the filament direction can be controlled by the process parameters. The specific ultimate strength is considerably higher than previously reported filaments made of cellulose nanofibrils. The strength is even in line with the strongest cellulose pulp fibres extracted from wood with the same degree of fibril alignment. Successful nanoscale alignment before gelation demands a proper separation of the timescales involved. Somewhat surprisingly, the device must not be too small if this is to be achieve
    corecore