21 research outputs found

    A Lightweight Field Cage for a Large TPC Prototype for the ILC

    Full text link
    We have developed and constructed the field cage of a prototype Time Projection Chamber for research and development studies for a detector at the International Linear Collider. This prototype has an inner diameter of 72 cm and a length of 61 cm. The design of the field cage wall was optimized for a low material budget of 1.21 % of a radiation length and a drift field homogeneity of Delta(E)/(E) less or equal 10^-4. Since November 2008 the prototype has been part of a comprehensive test beam setup at DESY and used as a test chamber for the development of Micro Pattern Gas Detector based readout devices.Comment: 16 pages, 13 figures, 3 table

    Beam Test with a GridGEM TPC Prototype Module

    Full text link
    The International Large Detector (ILD) --a detector concept for the International Linear Collider (ILC)-- foresees a Time Projection Chamber (TPC) as its main tracking detector. Currently, the R&D efforts for such a TPC focus on studies using a large prototype that can accommodate up to seven read-out modules which are comparable to the ones that would be used in the final ILD TPC. The DESY TPC group has developed such a module using GEMs for the gas amplification, which are mounted on thin ceramic frames. The module design and first results of a test beam campaign are presented.Comment: 6 pages, 11 figures, prepared for LCWS 2011 proceeding

    The ABC130 barrel module prototyping programme for the ATLAS strip tracker

    Full text link
    For the Phase-II Upgrade of the ATLAS Detector, its Inner Detector, consisting of silicon pixel, silicon strip and transition radiation sub-detectors, will be replaced with an all new 100 % silicon tracker, composed of a pixel tracker at inner radii and a strip tracker at outer radii. The future ATLAS strip tracker will include 11,000 silicon sensor modules in the central region (barrel) and 7,000 modules in the forward region (end-caps), which are foreseen to be constructed over a period of 3.5 years. The construction of each module consists of a series of assembly and quality control steps, which were engineered to be identical for all production sites. In order to develop the tooling and procedures for assembly and testing of these modules, two series of major prototyping programs were conducted: an early program using readout chips designed using a 250 nm fabrication process (ABCN-25) and a subsequent program using a follow-up chip set made using 130 nm processing (ABC130 and HCC130 chips). This second generation of readout chips was used for an extensive prototyping program that produced around 100 barrel-type modules and contributed significantly to the development of the final module layout. This paper gives an overview of the components used in ABC130 barrel modules, their assembly procedure and findings resulting from their tests.Comment: 82 pages, 66 figure

    Requirements of the support mechanics

    No full text
    Mechanical requirements of the support structure of an ILD TP

    PETALET Pickup and Placing tool

    No full text
    Description of the Petlet pickup and placing tool

    Mechanics Projects at DESY, ATLAS

    No full text
    Mechanical projects at DESY with contribution NIKHE

    Preliminary ideas of a local locking system

    No full text
    R&D studies of an local support and locking system of the endcap Petal

    TPC-ILD_KEK-mini-workshop_2018

    No full text
    ILD TPC Infrastructure, TPC-Support system,and Integratio

    Tools for Placement and Alignment of Modules on Petals

    No full text
    Tools for placing and allignment of modules of the Petalet demonstrator of the Petal endca
    corecore