30 research outputs found

    Beyond California: States in Fiscal Peril

    Get PDF
    Analyzes the causes of fiscal stress in nine states facing issues similar to California's: high foreclosure rates, increasing joblessness, loss of state revenues, large budget gaps, legal obstacles to balanced budgets, and poor money management practices

    Toward Uniform Implementation Of Parametric Map Digital Imaging And Communication In Medicine Standard In Multisite Quantitative Diffusion Imaging Studies

    Get PDF
    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation

    Case report: Fractional brain tumor burden magnetic resonance mapping to assess response to pulsed low-dose-rate radiotherapy in newly-diagnosed glioblastoma

    Get PDF
    BackgroundPulsed low-dose-rate radiotherapy (pLDR) is a commonly used reirradiation technique for recurrent glioma, but its upfront use with temozolomide (TMZ) following primary resection of glioblastoma is currently under investigation. Because standard magnetic resonance imaging (MRI) has limitations in differentiating treatment effect from tumor progression in such applications, perfusion-weighted MRI (PWI) can be used to create fractional tumor burden (FTB) maps to spatially distinguish active tumor from treatment-related effect.MethodsWe performed PWI prior to re-resection in four patients with glioblastoma who had undergone upfront pLDR concurrent with TMZ who had radiographic suspicion for tumor progression at a median of 3 months (0-5 months or 0-143 days) post-pLDR. The pathologic diagnosis was compared to retrospectively-generated FTB maps.ResultsThe median patient age was 55.5 years (50-60 years). All were male with IDH-wild type (n=4) and O6-methylguanine-DNA methyltransferase (MGMT) hypermethylated (n=1) molecular markers. Pathologic diagnosis revealed treatment effect (n=2), a mixture of viable tumor and treatment effect (n=1), or viable tumor (n=1). In 3 of 4 cases, FTB maps were indicative of lesion volumes being comprised predominantly of treatment effect with enhancing tumor volumes comprised of a median of 6.8% vascular tumor (6.4-16.4%).ConclusionThis case series provides insight into the radiographic response to upfront pLDR and TMZ and the role for FTB mapping to distinguish tumor progression from treatment effect prior to redo-surgery and within 20 weeks post-radiation

    A cross-sectional study to test equivalence of low- versus intermediate-flip angle dynamic susceptibility contrast MRI measures of relative cerebral blood volume in patients with high-grade gliomas at 1.5 Tesla field strength

    Get PDF
    Introduction1.5 Tesla (1.5T) remain a significant field strength for brain imaging worldwide. Recent computer simulations and clinical studies at 3T MRI have suggested that dynamic susceptibility contrast (DSC) MRI using a 30° flip angle (“low-FA”) with model-based leakage correction and no gadolinium-based contrast agent (GBCA) preload provides equivalent relative cerebral blood volume (rCBV) measurements to the reference-standard acquisition using a single-dose GBCA preload with a 60° flip angle (“intermediate-FA”) and model-based leakage correction. However, it remains unclear whether this holds true at 1.5T. The purpose of this study was to test this at 1.5T in human high-grade glioma (HGG) patients.MethodsThis was a single-institution cross-sectional study of patients who had undergone 1.5T MRI for HGG. DSC-MRI consisted of gradient-echo echo-planar imaging (GRE-EPI) with a low-FA without preload (30°/P-); this then subsequently served as a preload for the standard intermediate-FA acquisition (60°/P+). Both normalized (nrCBV) and standardized relative cerebral blood volumes (srCBV) were calculated using model-based leakage correction (C+) with IBNeuro™ software. Whole-enhancing lesion mean and median nrCBV and srCBV from the low- and intermediate-FA methods were compared using the Pearson’s, Spearman’s and intraclass correlation coefficients (ICC).ResultsTwenty-three HGG patients composing a total of 31 scans were analyzed. The Pearson and Spearman correlations and ICCs between the 30°/P-/C+ and 60°/P+/C+ acquisitions demonstrated high correlations for both mean and median nrCBV and srCBV.ConclusionOur study provides preliminary evidence that for HGG patients at 1.5T MRI, a low FA, no preload DSC-MRI acquisition can be an appealing alternative to the reference standard higher FA acquisition that utilizes a preload

    Basal Ganglia Iron Content Increases with Glioma Severity Using Quantitative Susceptibility Mapping: A Potential Biomarker of Tumor Severity

    No full text
    Background and Purpose: Gliomas have been found to alter iron metabolism and transport in ways that result in an expansion of their intracellular iron compartments to support aggressive tumor growth. This study used deep neural network trained quantitative susceptibility mapping to assess basal ganglia iron concentrations in glioma patients. Materials and Methods: Ninety-two patients with brain lesions were initially enrolled in this study and fifty-nine met the inclusion criteria. Susceptibility-weighted images were collected at 3.0 T and used to construct quantitative susceptibility maps via a deep neural network-based method. The regions of interest were manually drawn within basal ganglia structures and the mean voxel intensities were extracted and averaged across multiple slices. One-way ANCOVA tests were conducted to compare the susceptibility values of groups of patients based on tumor grade while controlling for age, sex, and tumor type. Results: The mean basal ganglia susceptibility for patients with grade IV tumors was higher than that for patients with grade II tumors (p = 0.00153) and was also higher for patients with grade III tumors compared to patients with grade II tumors (p = 0.020), after controlling for age, sex, and tumor type. Patient age influenced susceptibility values (p = 0.00356), while sex (p = 0.69) and tumor type (p = 0.11) did not. Conclusions: The basal ganglia iron content increased with glioma severity. Basal ganglia iron levels may thus be a useful biomarker in glioma prognosis and treatment, especially with regard to iron-based cancer therapies
    corecore