26 research outputs found

    The Immune System in Stroke

    Get PDF
    Stroke represents an unresolved challenge for both developed and developing countries and has a huge socio-economic impact. Although considerable effort has been made to limit stroke incidence and improve outcome, strategies aimed at protecting injured neurons in the brain have all failed. This failure is likely to be due to both the incompleteness of modelling the disease and its causes in experimental research, and also the lack of understanding of how systemic mechanisms lead to an acute cerebrovascular event or contribute to outcome. Inflammation has been implicated in all forms of brain injury and it is now clear that immune mechanisms profoundly influence (and are responsible for the development of) risk and causation of stroke, and the outcome following the onset of cerebral ischemia. Until very recently, systemic inflammatory mechanisms, with respect to common comorbidities in stroke, have largely been ignored in experimental studies. The main aim is therefore to understand interactions between the immune system and brain injury in order to develop novel therapeutic approaches. Recent data from clinical and experimental research clearly show that systemic inflammatory diseases -such as atherosclerosis, obesity, diabetes or infection - similar to stress and advanced age, are associated with dysregulated immune responses which can profoundly contribute to cerebrovascular inflammation and injury in the central nervous system. In this review, we summarize recent advances in the field of inflammation and stroke, focusing on the challenges of translation between pre-clinical and clinical studies, and potential anti-inflammatory/immunomodulatory therapeutic approaches

    Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices

    Get PDF
    Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied via local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micron elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ~2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing

    Optimisation de la loi D’epaisseur pour une Coque Mince de Revolution

    No full text
    corecore