11,550 research outputs found
Stable retrograde orbits around the triple system 2001 SN263
The NEA 2001 SN263 is the target of the ASTER MISSION - First Brazilian Deep
Space Mission. Araujo et al. (2012), characterized the stable regions around
the components of the triple system for the planar and prograde cases. Knowing
that the retrograde orbits are expected to be more stable, here we present a
complementary study. We now considered particles orbiting the components of the
system, in the internal and external regions, with relative inclinations
between , i.e., particles with retrograde
orbits. Our goal is to characterize the stable regions of the system for
retrograde orbits, and then detach a preferred region to place the space probe.
For a space mission, the most interesting regions would be those that are
unstable for the prograde cases, but stable for the retrograde cases. Such
configuration provide a stable region to place the mission probe with a
relative retrograde orbit, and, at the same time, guarantees a region free of
debris since they are expected to have prograde orbits. We found that in fact
the internal and external stable regions significantly increase when compared
to the prograde case. For particles with and , we found
that nearly the whole region around Alpha and Beta remain stable. We then
identified three internal regions and one external region that are very
interesting to place the space probe. We present the stable regions found for
the retrograde case and a discussion on those preferred regions. We also
discuss the effects of resonances of the particles with Beta and Gamma, and the
role of the Kozai mechanism in this scenario. These results help us understand
and characterize the stability of the triple system 2001 SN263 when retrograde
orbits are considered, and provide important parameters to the design of the
ASTER mission.Comment: 11 pages, 8 figures. Accepted for publication in MNRAS - 2015 March
1
Acrocarpus fraxinifolius Wight & Arn.
SeminĂĄrio realizado em Curitiba, de 6 a 8 de outubro de 1998
High coercivity induced by mechanical milling in cobalt ferrite powders
In this work we report a study of the magnetic behavior of ferrimagnetic
oxide CoFe2O4 treated by mechanical milling with different grinding balls. The
cobalt ferrite nanoparticles were prepared using a simple hydrothermal method
and annealed at 500oC. The non-milled sample presented coercivity of about 1.9
kOe, saturation magnetization of 69.5 emu/g, and a remanence ratio of 0.42.
After milling, two samples attained coercivity of 4.2 and 4.1 kOe, and
saturation magnetization of 67.0 and 71.4 emu/g respectively. The remanence
ratio MR/MS for these samples increase to 0.49 and 0.51, respectively. To
investigate the influence of the microstructure on the magnetic behavior of
these samples, we used X-ray powder diffraction (XPD), transmission electron
microscopy (TEM), and vibrating sample magnetometry (VSM). The XPD analysis by
the Williamson-Hall plot was used to estimate the average crystallite size and
strain induced by mechanical milling in the samples
Collision and Stable Regions around Bodies with Simple Geometric Shape
We show the expressions of the gravitational potential of homogeneous bodies with well-defined simple geometric shapes to study the phase space of trajectories around these bodies. The potentials of the rectangular and triangular plates are presented. With these expressions we study the phase space of trajectories of a point of mass around the plates, using the Poincaré surface of section technique. We determined the location and the size of the stable and collision regions in the phase space, and the identification of some resonances. This work is the first and an important step for others studies, considering 3D bodies. The study of the behavior of a point of mass orbiting around these plates (2D), near their corners, can be used as a parameter to understand the influence of the gravitational potential when the particle is close to an irregular surface, such as large craters and ridges
Superscars in the LiNC=LiCN isomerization reaction
We demonstrate the existence of superscarring in the LiNC=LiCN isomerization
reaction described by a realistic potential interaction in the range of readily
attainable experimental energies. This phenomenon arises as the effect of two
periodic orbits appearing "out of the blue"in a saddle--node bifurcation taking
place in the dynamics of the system. Potential practical consequences of this
superlocalization in the corresponding wave functions are also considered.Comment: 6 pages, 5 figures. to appear in EP
Taxonomy and software architecture for real-time context-aware collaborative smart environments
The widespread of Internet of Things (IoT) and the price reduction and ubiquity of telecommunications has led to the emergence of smart environments where devices are becoming increasingly smarter and everything is connected and from which society aims to benefit. The data obtained from IoT is rapidly processed in various domains for the achievement of smart cities and societies. However, in many cases, applications are not contextualized by using data from outside the domain but are only contextualized using data from the domain itself, missing the opportunity for further contextualization. The lack of common criteria for the integration of data from different application domains is one of the main reasons that significantly hinders the integration of third-party data into real-time processing and decision-making systems and thus, the context awareness of developed applications. Although the use of several taxonomies and ontologies for context awareness in various application domains have been proposed, in many cases they are highly domain specific and/or difficult to integrate with other systems, which makes it challenging to facilitate data sharing between different systems and their processing to achieve enhanced context awareness. We aim to contribute to the addressing of these limitations through a reusable and extensible multi-domain taxonomy targeted to collaborative IoT and smart environments, which is also automatically integrated into a software architecture with real-time complex event processing technologies. The proposed solution has been illustrated through a case study and performance tests have been carried out in different computing capacity scenarios, showing its feasibility and usefulness
- âŠ