6 research outputs found

    Emerging technologies for the production of nanocellulose from lignocellulosic biomass

    Get PDF
    Nanocellulose is a unique and promising natural nanomaterial and has gained significant attention due to its applications in several important areas. Thus, researchers are continuously looking for the most efficient, sustainable, economically viable, and environmentally friendly production technologies to fulfil its growing demand. Conventional production technologies, which include various physical, chemical, and physicochemical methods, are currently inadequate for this purpose and have several limitations such as long processing time, high energy consumption, low recovery of nanocellulose, and many others. To overcome these shortcomings, scientists have investigated the prospect of utilizing emerging processing technologies such as microwave irradiation, deep eutectic solvent, enzymatic processing, cold plasma, electron beam irradiation, and pulsed electric field in nanocellulose preparation. In general, studies have shown that the application of emerging technologies enhances the extraction yield and properties of nanocellulose. This article presents a review of the most recent works reported on the application of emerging technologies in nanocellulose production

    Biodegradable Nanocomposite Multifunctional Packaging Film for Fruits

    Get PDF
    Biopolymers have been used in food packaging in recent years due to high pollution rates and decreased biodegradation of synthetic polymers. Chitosan (CH) and Sodium alginate (SA) are both biodegradable biopolymers with excellent film forming capability. TiO2 nanoparticles have high mechanical strength, degradation ability and antimicrobial properties, which are beneficial in food packaging. The aim of the current work is to develop the biodegradable multifunctional nanocomposite film for fruit (i.e., Pear) packaging applications. Bionanocomposite film was prepared by solvent casting method using CH-SA and various concentrations of TiO2. The multifunctional properties such as UV barrier, thermal, water retention, mechanical, chemical, and antimicrobial were determined. The results showed that the TiO2 incorporated nanocomposite film has a higher tensile strength than the control films without TiO2. The highest UV barrier properties were observed in the developed nanocomposite films with increased TiO2 concentration. There was a reduction in film transparency and observed the opaque colour of the film, as the concentration of TiO2 increases. These nanocomposite films with TiO2 also showed higher thermal stability and water hydrophobicity properties. In addition, the antimicrobial studies demonstrated the enhanced antimicrobial properties of the nanocomposite films with TiO2 against bacteria Salmonella and Listeria monocytogenes with respect to the control film. The results concluded that the nanocomposite films incorporated with TiO2 has a potential to enhance the antibacterial and UV barrier, mechanical properties of the packaging film. Finally, the developed packaging materials can be employed as an active packaging to extend the shelf life and improve the quality of packaged fruits, as well as it can reduce the harmful impact on the environment

    Active Packaging Film Based on Poly Lactide-Poly (Butylene Adipate-Co-Terephthalate) Blends Incorporated with Tannic Acid and Gallic Acid for the Prolonged Shelf Life of Cherry Tomato

    Get PDF
    The antimicrobial property is the key feature of active packaging. Biological macromolecules such as tannic and gallic acids are naturally found in plants such as tea, fruits, berries, and grapes. The incorporation of tannic acid (TA) and gallic acid (GA) in the biodegradable polymer blend Poly Lactide-Poly (Butylene Adipate-Co-Terephthalate) (PLA-PBAT) was used in this study to assess the potential of active packaging. TA and GA (10 wt%) composite films showed a 65%–66% increase in the UV barrier property. The tensile strength value increased after the incorporation of TA and GA (10 wt%), respectively. Overall, 1.67 and 2.2 log reductions in E. coli and L. monocytogenes growth were observed, respectively, in the presence of TA (10 wt%) composite film. In addition, TA composite film was able to maintain and enhance the quality of cherry tomatoes for up to 20 days of storage at room temperature. For cherry tomatoes packed in PLA-PBAT-TA10 (wt%), TSS decreased by 6.3%, pH was 4.3, and a microbial reduction of 2.70 log CFU/mL was observed. In conclusion, TA composite film had confirmed significant UV blocking properties, surface hydrophobicity, and antibacterial properties, which show its potential as an active packaging film

    Seaweed Polysaccharide in Food Contact Materials (Active Packaging, Intelligent Packaging, Edible Films, and Coatings)

    Get PDF
    Food contact materials (FCMs) are materials that come in contact with food products such as food packaging which play a significant role in the food quality and safety. Plastic, which is a major food packaging material, harms the eco-system, wildlife, and the environment. As a result, numerous researches have been in progress on alternative polymers, which has similar properties as plastic but is also environmentally friendly (biodegradable). In recent years, the utilization of seaweed polysaccharides has piqued interest due to its biodegradability, non-toxicity, antioxidant capabilities, and excellent film formation ability. However, it has a number of drawbacks such as low tensile strength, water solubility, and moderate antibacterial characteristics, among others. The addition of other biopolymers, nanoparticles, or natural active agents improves these features. In this review article, we have summarized the current state of seaweed polysaccharide research in active packaging, intelligent packaging, edible films, and coatings. It also highlights the physical, thermal, antioxidant, and other properties of these materials. Finally, the article discusses the relevant legislation as well as the field’s future prospects. Research shows that seaweeds polysaccharide looks promising as a sustainable food contact material, but there is always a potential for development to make it market feasible

    A comprehensive review on metal oxide-nanocellulose composites in sustainable active and intelligent food packaging

    Get PDF
    The aim of this article is to provide an overview of the potential advantages and drawbacks of nanocellulose and metal oxide-based composites in food packaging. These materials offer improved mechanical and barrier properties, as well as antioxidant and antimicrobial benefits that extend the shelf life of food products. Nanocomposite structures protect food from various physiological factors and immobilize enzymes, while metal oxide nanoparticles provide antibacterial effects against Gram-positive and Gram-negative bacteria. However, there are concerns regarding the safety of nanoparticles and their potential migration into packaged food during processing and storage. This article explores these issues and highlights the need for further research to ensure the safe and effective use of these materials in food packaging. The successful implementation and commercialization of nanocellulose and metal oxide-based composites in food packaging could offer significant benefits to the food and beverage industry by improving the quality and shelf life of products
    corecore