23 research outputs found

    Study of cardiac autonomic function in drug-naive, newly diagnosed epilepsy patients

    Get PDF
    Background: Epilepsy is associated with ictal autonomic dysfunction which may extend into the inter-ictal period. Antiepileptic drugs have often been blamed for cardiac autonomic dysfunction in epilepsy patients. In this study we have investigated cardiac autonomic parameters in order to evaluate autonomic functions of drug-naive epilepsy patients. METHOD: Twenty drug-naive patients (15 males and 5 females) with epilepsy, and an equal number of age and gender matched controls, were evaluated for short-term resting heart rate variability and conventional cardiovascular autonomic measurements. Results: The mean age of patients was 29.30 +/- 9.80 yrs (17-55 yrs), mean age at seizure onset was 19.70 +/- 9.15 yrs (3-40 yrs) and mean length of time since last seizure was 5.60 +/- 7.00 days (1-30 days). While there was no difference in the resting heart rate or conventional autonomic test parameters, time domain heart rate variability measurements showed a decreased percentage of R-R intervals of less than 50 ms and root mean square of R-R intervals in patients, when compared to controls. Frequency domain parameters showed a decreased total power (patients: 1,796.58 +/- 1,052.45 ms2; controls: 2,934.23 +/- 1,767.06 ms2, p = 0.008). Parameters indicative of decreased vagal tone, i.e. decreased high frequency power and increased low to high frequency ratio (patients: 1.69 +/- 0.94; controls: 1.14 +/- 0.64, p = 0.045), were observed among patients compared to controls. CONCLUSION: Subtle but definite cardiac autonomic dysfunction, especially in vagal tone, was identified in drug-naive, new-onset epilepsy patients. Seizures can cause long-term and often progressive cardiac autonomic dysfunction which may be independent of concomitant antiepileptic drugs

    Nonlinear variability of body sway in patients with phobic postural vertigo

    Get PDF
    Background: Subjective postural imbalance is a key symptom in the somatoform phobic postural vertigo (PPV). It has been assumed that more attentional control of body posture and / or co-contraction of leg muscles during standing is used to minimize the physiological body sway in PPV. Here we analyze nonlinear variability of body sway in patients with PPV in order to disclose changes in postural control strategy associated with PPV. Methods: Twenty patients with PPV and 20 age-matched healthy subjects (HS) were recorded on a stabilometer platform with eyes open (EO), eyes closed (EC), and while standing on a foam rubber with eyes closed (ECF). Spatio-temporal changes of the center of pressure (CoP) displacement were analyzed to assess the structure of postural variability by computing the scaling exponent a and the sample entropy (SEn) of the time series. Results: With EO on firm ground a and SEn of CoP displacement were significantly lower in patients (p < 0.001). For more difficult conditions (EC, ECF) postural variability in PPV assimilated to that of HS. Conclusion: Postural control in PPV patients differs from HS under normal stance condition. It is characterized by a reduced scaling behavior and higher regularity. These changes in the structure of postural variability might suggest an inappropriate attentional involvement with stabilizing strategies, which are used by HS only for more demanding balance tasks

    The Gait Disorder in Downbeat Nystagmus Syndrome

    Get PDF
    Background: Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder. Methods: Investigation of walking in 50 DBN patients (age 72 +/- 11 years, 23 females) and 50 healthy controls (HS) (age 70 +/- 11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed. Results: In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001),increased base of support (p<0.050),and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050). Conclusions: (I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia

    Accelerometric Trunk Sensors to Detect Changes of Body Positions in Immobile Patients

    Get PDF
    Mobilization, verticalization and position change are mandatory for severely affected neurological patients in early neurorehabilitation in order to improve neurological status and prevent complications. However, with the exception of hospitals and rehabilitation facilities, this activity is not usually monitored and so far the automated monitoring of position changes in immobile patients has not been investigated. Therefore, we investigated whether accelerometers on the upper trunk could reliably detect body position changes in immobile patients. Thirty immobile patients in early neurorehabilitation (Barthel Index 30) were enrolled. Two tri-axial accelerometers were placed on the upper trunk and on the thigh. Information on the position and position changes of the subject were derived from accelerometer data and compared to standard written documentation in the hospital over 24 h. Frequency and duration of different body positions (supine, sidelying, sitting) were measured. Data are presented as mean +/- SEM. Groups were compared using one-way ANOVA or Kruskal-Wallis-test. Differences were considered significant if p < 0.05. Trunk sensors detected 100% and thigh sensors 66% of position changes (p = 0.0004) compared to standard care documentation. Furthermore, trunk recording also detected additional spontaneous body position changes that were not documented in standard care (81.8 +/- 4.4% of all position changes were documented in standard care documentation) (p < 0.0001). We found that accelerometric trunk sensors are suitable for recording position changes and mobilization of severely affected patients. Our findings suggest that using accelerometers for care documentation is useful for monitoring position changes and mobilization frequencies in and outside of hospital for severely affected neurological patients. Accelerometric sensors may be valuable in monitoring continuation of care plans after intensive neurorehabilitation

    Noisy Galvanic Stimulation Improves Roll-Tilt Vestibular Perception in Healthy Subjects

    Get PDF
    It has recently been demonstrated that noisy galvanic vestibular stimulation (nGVS) delivered as imperceptible white noise can improve balance control via the induction of stochastic resonance. However, it is unclear whether these balance improvements are accompanied by simultaneous enhancement to vestibular motion perception. In this study, 15 healthy subjects performed 8 quiet-stance tasks on foam with eyes closed at 8 different nGVS amplitudes ranging from 0 mA (baseline) to 0.5 mA. The nGVS amplitude that improved balance performance most compared to baseline was assigned as the optimal nGVS amplitude. Optimal nGVS amplitudes could be determined for 13 out of 15 subjects, who were included in the subsequent experimental procedures. The effect of nGVS delivered at the determined optimal intensity on vestibular perceptual thresholds was examined using direction-recognition tasks on a motion platform, testing roll rotations at 0.2, 0.5, and 1.0 Hz, both with active and sham nGVS stimulations. nGVS significantly reduced direction-recognition thresholds compared to the sham condition at 0.5 and 1.0 Hz, while no significant effect of nGVS was found at 0.2 Hz. Interestingly, no correlation was found between nGVS-induced improvements in balance control and vestibular motion perception at 0.5 and 1 Hz, which may suggest different mechanisms by which nGVS affects both modalities. For the first time, we show that nGVS can enhance roll vestibular motion perception. The outcomes of this study are likely to be relevant for the potential therapeutic use of nGVS in patients with balance problems

    Quantification of gait changes in subjects with visual height intolerance when exposed to heights

    Get PDF
    Introduction: Visual height intolerance (vHI) manifests as instability at heights with apprehension of losing balance or falling. We investigated contributions of visual feedback and attention on gait performance of subjects with vHI. Materials and Methods: Sixteen subjects with vHI walked over a gait mat (GAITRite (R)) on a 15-m-high balcony and at ground-level. Subjects walked at different speeds (slow, preferred, fast), during changes of the visual input (gaze straight/up/down;eyes open/closed), and while doing a cognitive task. An rmANOVA with the factors "height situation" and "gait condition" was performed. Subjects were also asked to estimate the height of the balcony over ground level. The individual estimates were used for correlations with the gait parameters. Results: Study participants walked slower at heights, with reduced cadence and stride length. The double support phases were increased (all p < 0.01),which correlated with the estimated height of the balcony (R-2 = 0.453, p < 0.05). These changes were still present when walking with upward gaze or closure of the eyes. Under the conditions walking and looking down to the floor of the balcony, during dual-task and fast walking, there were no differences between the gait performance on the balcony and at ground-level. Discussion: The found gait changes are features of a cautious gait control. Internal, cognitive models with anxiety play an important role for vHI; gait was similarly affected when the visual perception of the depth was prevented. Improvement by dual task at heights may be associated by a reduction of the anxiety level. Conclusion: It is conceivable that mental distraction by dual task or increasing the walking speed might be useful recommendations to reduce the imbalance during locomotion in subjects susceptible to vHI

    Bilateral vestibulopathy causes selective deficits in recombining novel routes in real space

    Get PDF
    The differential impact of complete and incomplete bilateral vestibulopathy (BVP) on spatial orientation, visual exploration, and navigation-induced brain network activations is still under debate. In this study, 14 BVP patients (6 complete, 8 incomplete) and 14 age-matched healthy controls performed a navigation task requiring them to retrace familiar routes and recombine novel routes to find five items in real space. 18F-fluorodeoxyglucose-PET was used to determine navigation-induced brain activations. Participants wore a gaze-controlled, head-fixed camera that recorded their visual exploration behaviour. Patients performed worse, when recombining novel routes (p < 0.001), whereas retracing of familiar routes was normal (p = 0.82). These deficits correlated with the severity of BVP. Patients exhibited higher gait fluctuations, spent less time at crossroads, and used a possible shortcut less often (p < 0.05). The right hippocampus and entorhinal cortex were less active and the bilateral parahippocampal place area more active during navigation in patients. Complete BVP showed reduced activations in the pontine brainstem, anterior thalamus, posterior insular, and retrosplenial cortex compared to incomplete BVP. The navigation-induced brain activation pattern in BVP is compatible with deficits in creating a mental representation of a novel environment. Residual vestibular function allows recruitment of brain areas involved in head direction signalling to support navigation

    Higher-Order Spectrum in Understanding Nonlinearity in EEG Rhythms

    Get PDF
    The fundamental nature of the brain's electrical activities recorded as electroencephalogram (EEG) remains unknown. Linear stochastic models and spectral estimates are the most common methods for the analysis of EEG because of their robustness, simplicity of interpretation, and apparent association with rhythmic behavioral patterns in nature. In this paper, we extend the use of higher-order spectrum in order to indicate the hidden characteristics of EEG signals that simply do not arise from random processes. The higher-order spectrum is an extension Fourier spectrum that uses higher moments for spectral estimates. This essentially nullifies all Gaussian random effects, therefore, can reveal non-Gaussian and nonlinear characteristics in the complex patterns of EEG time series. The paper demonstrates the distinguishing features of bispectral analysis for chaotic systems, filtered noises, and normal background EEG activity. The bispectrum analysis detects nonlinear interactions; however, it does not quantify the coupling strength. The squared bicoherence in the nonredundant region has been estimated to demonstrate nonlinear coupling. The bicoherence values are minimal for white Gaussian noises (WGNs) and filtered noises. Higher bicoherence values in chaotic time series and normal background EEG activities are indicative of nonlinear coupling in these systems. The paper shows utility of bispectral methods as an analytical tool in understanding neural process underlying human EEG patterns

    Downbeat nystagmus becomes attenuated during walking compared to standing

    Get PDF
    Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus related to vestibulo-cerebellar impairments and associated with impaired vision and postural imbalance. DBN intensity becomes modulated by various factors such as gaze direction, head position, daytime, and resting conditions. Further evidence suggests that locomotion attenuates postural symptoms in DBN. Here, we examined whether walking might analogously influence ocular-motor deficits in DBN. Gaze stabilization mechanisms and nystagmus frequency were examined in 10 patients with DBN and 10 age-matched healthy controls with visual fixation during standing vs. walking on a motorized treadmill. Despite their central ocular-motor deficits, linear and angular gaze stabilization in the vertical plane were functional during walking in DBN patients and comparable to controls. Notably, nystagmus frequency in patients was considerably reduced during walking compared to standing (p < 0.001). The frequency of remaining nystagmus during walking was further modulated in a manner that depended on the specific phase of the gait cycle (p = 0.015). These attenuating effects on nystagmus intensity during walking suggest that ocular-motor control disturbances are selectively suppressed during locomotion in DBN. This suppression is potentially mediated by locomotor efference copies that have been shown to selectively govern gaze stabilization during stereotyped locomotion in animal models
    corecore