26 research outputs found

    A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer.

    Get PDF
    Background An early age at Breast Cancer (BC) onset may be a hallmark of inherited predisposition, but BRCA1/2 mutations are only found in a minority of younger BC patients. Among the others, a fraction may carry mutations in rarer BC genes, such as TP53, STK11, CDH1 and PTEN. As the identification of women harboring such mutations allows for targeted risk-management, the knowledge of associated manifestations and an accurate clinical and family history evaluation are warranted. Case presentation We describe the case of a woman who developed an infiltrating ductal carcinoma of the right breast at the age of 32, a contralateral BC at age 36 and another BC of the right breast at 40. When she was 39 years-old, during a dermatological examination, mucocutaneous features suggestive of Cowden Syndrome, a disorder associated to germ-line PTEN mutations, were noticed. PTEN genetic testing revealed the novel c.71A > T (p.Asp24Val) mutation, whose deleterious effect, suggested by conservation data and in silico tools, was definitely demonstrated by the incapacity of mutant PTEN to inhibit Akt phosphorylation when used to complement PTEN-null cells. In BC tissue, despite the absence of LOH or somatic mutations of PTEN, Akt phosphorylation was markedly increased in comparison to normal tissue, thus implying additional somatic events into the deregulation of the PI3K/Akt/mTOR pathway and, presumably, into carcinogenesis. Hence, known oncogenic mutations in PIK3CA (exons 10 and 21) and AKT1 (exon 2) were screened in tumor DNA with negative results, which suggests that the responsible somatic event(s) is a different, uncommon one. Conclusion This case stresses the importance of clinical/genetic assessment of early-onset BC patients in order to identify mutation carriers, who are at high risk of new events, so requiring tailored management. Moreover, it revealed a novel PTEN mutation with pathogenic effect, pointing out, however, the need for further efforts to elucidate the molecular steps of PTEN-associated carcinogenesis

    Two distinct thyroid tumours in a Cowden Syndrome patient carrying both a 10q23 and a mitochondrial DNA germline deletion

    No full text
    BACKGROUND: Cowden syndrome (CS) is an autosomal dominant disorder characterised by macrocephaly, specific mucocutaneous features and predisposition to benign and malignant tumours. Detectable mutations in the PTEN gene account for 80-85% of cases. METHODS/RESULTS: Here, the authors report a patient with macrocephaly and typical CS mucocutaneous features who developed dysplastic cerebellar gangliocytoma and two synchronous thyroid cancers of papillary and oncocytic type, in whom a germline 500-Kb deletion on chromosome 10q23 including PTEN was detected. Molecular characterisation of thyroid cancer led to the identification of the oncogenic BRAFV600E mutation in the papillary carcinoma. BRAFV600E has been proposed to cause cancer only in the presence of a tumour-suppressor mutation, which, in this case, could be the PTEN deletion. In the oncocytic carcinoma, a large deletion in the mitochondrial-DNA-encoded MTND1 was found, associated with respiratory complex I disassembly, which was subsequently shown to be a constitutional, de novo genetic lesion. CONCLUSIONS: This is the first reported case of a patient with CS carrying constitutional deletions in both the nuclear and the mitochondrial genome that might help elucidate some aspects of CS pathogenesis

    Apolipoprotein B is a new target of the GDNF/RET and ET-3/EDNRB signalling pathways

    No full text
    Background  GDNF/RET and Endothelin-3 (ET-3)/EDNRB regulate survival, differentiation, migration, and proliferation of neural crest-derived cells. Although several RET and EDNRB signalling mediators have been characterized, most of the genes targeted by these two pathways are still largely unknown. We focused our study on apolipoprotein B (APOB) as a novel target gene of the RET and EDNRB pathways, based on previous data obtained using a Caenorhabditis elegans strain mutant for the homologue of mammalian ECE1. Methods  Molecular and cellular studies of Apob were performed in the murine Neuro2a cells, an in vitro model for studying neural crest-derived cell development, along with a mouse knock-in for the Hirschsprung-associated mutation RetC620R. Silencing for Apob and Ret has been performed via shRNA. Key Results  GDNF/RET and ET-3/EDNRB cooperated in inducing neuronal differentiation resulting in Apob activation in Neuro2a cell line. Apob expression was downregulated in mouse embryos homozygous for the RetC620R mutation and presenting a severe Hirschsprung phenotype. Ret silencing prevented Apob expression increase. MAPK P38 kinase activation evoked Apob expression via GDNF/RET signalling in Neuro2a cells. A p53-dependent repressor element in Apob promoter resulted in a reduced Apob expression. Silencing of Apob reduced HuD protein expression. Conclusions & Inferences  Apob is a novel downstream target of the RET/EDNRB pathways with a role in neuronal survival and maintenance, as indicated by its effect on HuD expression. Our data provide a conceptual framework to investigate and establish the role of APOB gene in severe gut dysmotility

    Apolipoprotein B is a new target of the GDNF/RET and ET-3/EDNRB signalling pathways

    No full text
    Background  GDNF/RET and Endothelin-3 (ET-3)/EDNRB regulate survival, differentiation, migration, and proliferation of neural crest-derived cells. Although several RET and EDNRB signalling mediators have been characterized, most of the genes targeted by these two pathways are still largely unknown. We focused our study on apolipoprotein B (APOB) as a novel target gene of the RET and EDNRB pathways, based on previous data obtained using a Caenorhabditis elegans strain mutant for the homologue of mammalian ECE1. Methods  Molecular and cellular studies of Apob were performed in the murine Neuro2a cells, an in vitro model for studying neural crest-derived cell development, along with a mouse knock-in for the Hirschsprung-associated mutation RetC620R. Silencing for Apob and Ret has been performed via shRNA. Key Results  GDNF/RET and ET-3/EDNRB cooperated in inducing neuronal differentiation resulting in Apob activation in Neuro2a cell line. Apob expression was downregulated in mouse embryos homozygous for the RetC620R mutation and presenting a severe Hirschsprung phenotype. Ret silencing prevented Apob expression increase. MAPK P38 kinase activation evoked Apob expression via GDNF/RET signalling in Neuro2a cells. A p53-dependent repressor element in Apob promoter resulted in a reduced Apob expression. Silencing of Apob reduced HuD protein expression. Conclusions & Inferences  Apob is a novel downstream target of the RET/EDNRB pathways with a role in neuronal survival and maintenance, as indicated by its effect on HuD expression. Our data provide a conceptual framework to investigate and establish the role of APOB gene in severe gut dysmotility
    corecore