20 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Physiological Behaviour of Camel with Different Draught and Work-Rest Cycles in Field Operations

    No full text
    Camels of different age and body weights were selected randomly from a village in Bikaner District. The draught equivalent to 16, 18 and 20 % of body weight of camels were applied by using a multipurpose tool frame with tillage tools. Draught was varied by increasing/ decreasing the number of tynes and depth of operation. Physiological responses like pulse rate, respiration rate, body temperature and speed were recorded at all draught levels with three work rest cycles, namely WR,: 4h (W)- 5h (R)- 4h (W), WR2 : 3h (W)- 1h (R)- 2h (W)- 4h (R)-3h (W) and WR3 : 2h (W)- 1h (R) 2h (W)- 4h (R)- 2h (W)- 1h (R)- 2h (W). Maximum increase in physiological responses was observed with work rest cycle WR3 The increase in pulse rate, respiration rate and body temperature were 35 to 62 beats/min, 10 to 18 breaths/min and 37.5 to 39.2°C respectively with WR, while these were found minimum with WR3 in the range of 33 to 51 beats! min, 8 to 12 breaths/min and 37.3 to 38.4°C respectively. On the basis of physiological responses work rest cycles WR3 was found better as compared to other work rest cycles

    Corrosion behaviour of TiB2 reinforced aluminium based in situ metal matrix composites

    Get PDF
    This paper focuses on corrosion characteristics of cast and forged aluminium 6061 based composites reinforced with TiB2 particles. Composites were synthesised by in situ technique using potassium hexafluorotitanate salt (K2TiF6) and potassium tetrafluroborate (KBF4) halide salts by stir casting route at a temperature of 850 °C. Cast aluminium alloy and its in situ composites were subjected to open die drop forging at a temperature of 500 °C. Both cast and forged alloy 6061 and in situ composites were then subjected to microstructure studies, salt spray test. Salt spray test was conducted as per ASTM B117 standard test procedure using 5% sodium chloride test solution. Result reveals that, forged alloy and its in situ composites exhibited improved corrosion resistance compared to cast ones

    Synthesis and characterization of flyash reinforced polymer composites developed by Fused Filament Fabrication

    No full text
    Fused filament fabrication (FFF) has seen an upsurge in its utilization towards development of tailored made materials of polymer base. The advancement and diversity in fabricating the polymer composite parts by using FFF has seen the embracement of this technology in wider aspects, ranging from automotive, aerospace, construction and has marched towards day to day requirements. This research article focuses on development of polymer composite; by using flyash (FA), an industrial waste produced during coal combustion, as reinforcement in Acrylonitrile butadiene styrene (ABS) matrix, to study the physical and mechanical properties. FA, which is primarily made up of metal oxides, plays an imperative role as reinforcement. Easily and abundantly available, FA is being used in several applications to reduce the landfills utilization and also helps the environment. In this study FA was added as reinforcement in 5 and 10 wt. % respectively to ABS matrix and was developed into filament of 1.75 mm diameter. The developed ABS + FA polymer composite using FFF, were analyzed for physical and mechanical properties as per American Society for Testing and Materials (ASTM) standards. Microstructure studies were carried out for the developed composite to understand their behavior in enhancing the dimensional accuracy and tensile strength with incremental addition of FA up to 10 wt%. Tensile strength was enhanced by 28.19% and 36.13% for ABS + 5wt. % FA and ABS + 10wt. % FA respectively. Dimensional stability was also enhanced. Similarly, surface roughness analysis was carried out and it was observed to reduce with addition of FA. The surface roughness measurements provided suitable results of decrement by 9.64% and 14.6% for ABS + 5wt. % FA and ABS + 10wt. % FA respectively. Overall, the usage of FA along with FFF, has paved a path in sustainable and green technology in manufacturing

    Forest Fire Risk Zone Mapping of Eravikulam National Park in India: A Comparison Between Frequency Ratio and Analytic Hierarchy Process Methods

    Get PDF
    Forest fire is one of the most common natural hazards occurring in the Western Ghats region of Kerala and is one of the reasons for forest degradation. This natural disaster causes considerable damage to the biodiversity of this region during the dry fire season. The area selected for the present study, Eravikulam National Park, which is predominantly of grassland vegetation, is also prone to forest fires. This study aims to delineate the forest fire risk zones in Eravikulam National Park using remote sensing (RS) data and geographic information system (GIS) techniques. In the present study, methods such as Analytic Hierarchy Process (AHP) and Frequency Ratio (FR) were used to derive the weights, and the results were compared. We have used seven factors, i.e. land cover types, normalized difference vegetation index, normalized difference water index, slope angle, slope aspect, distance from the settlement, and distance from the road to prepare the fire risk zone map. The area of the prepared risk zone maps is divided into three zones, namely low, moderate, and high. From the study, it was found that the fire occurring in this area is due to natural as well as anthropogenic factors. The prepared forest fire risk zone maps are validated using the fire incidence data for the period from January 2003 to June 2019 collected from the records of the Forest Survey of India. The investigation revealed that 72% and 24% of the fire incidences occurred in the high risk zone of the maps prepared using the AHP and FR methods, respectively, which ascertained the superiority of the AHP method over the FR method for forest fire risk zone mapping. The receiver operating characteristic (ROC) curve analysis gives an area under the ROC curve (AUC) value of 0.767 and 0.567 for the AHP and FR methods, respectively. The risk zone maps will be useful for staff of the forest department, planners, and officials of the disaster management department to take effective preventive and mitigation measures
    corecore