31 research outputs found
Epigenetic control of cell cycle-dependent histone gene expression is a principal component of the abbreviated pluripotent cell cycle
Self-renewal of human pluripotent embryonic stem cells proceeds via an abbreviated cell cycle with a shortened G(1) phase. We examined which genes are modulated in this abbreviated period and the epigenetic mechanisms that control their expression. Accelerated upregulation of genes encoding histone proteins that support DNA replication is the most prominent gene regulatory program at the G(1)/S-phase transition in pluripotent cells. Expedited expression of histone genes is mediated by a unique chromatin architecture reflected by major nuclease hypersensitive sites, atypical distribution of epigenetic histone marks, and a region devoid of histone octamers. We observed remarkable differences in chromatin structure--hypersensitivity and histone protein modifications--between human embryonic stem (hES) and normal diploid cells. Cell cycle-dependent transcription factor binding permits dynamic three-dimensional interactions between transcript initiating and processing factors at 5\u27 and 3\u27 regions of the gene. Thus, progression through the abbreviated G(1) phase involves cell cycle stage-specific chromatin-remodeling events and rapid assembly of subnuclear microenvironments that activate histone gene transcription to promote nucleosomal packaging of newly replicated DNA during stem cell renewal
Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling
The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment
Cyclin D2 and the CDK substrate p220(NPAT) are required for self-renewal of human embryonic stem cells
Self-renewal of pluripotent human embryonic stem (hES) cells utilizes an abbreviated cell cycle that bypasses E2F/pRB-dependent growth control. We investigated whether self-renewal is alternatively regulated by cyclin/CDK phosphorylation of the p220(NPAT)/HiNF-P complex to activate histone gene expression at the G1/S phase transition. We show that cyclin D2 is prominently expressed in pluripotent hES cells, but cyclin D1 eclipses cyclin D2 during differentiation. Depletion of cyclin D2 or p220(NPAT) causes a cell cycle defect in G1 reflected by diminished phosphorylation of p220(NPAT), decreased cell cycle dependent histone H4 expression and reduced S phase progression. Thus, cyclin D2 and p220(NPAT) are principal cell cycle regulators that determine competency for self-renewal in pluripotent hES cells. While pRB/E2F checkpoint control is relinquished in human ES cells, fidelity of physiological regulation is secured by cyclin D2 dependent activation of the p220(NPAT)/HiNF-P mechanism that may explain perpetual proliferation of hES cells without transformation or tumorigenesis
Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling
The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment
p53 checkpoint ablation exacerbates the phenotype of Hinfp dependent histone H4 deficiency
Histone Nuclear Factor P (HINFP) is essential for expression of histone H4 genes. Ablation of Hinfp and consequential depletion of histones alter nucleosome spacing and cause stalled replication and DNA damage that ultimately result in genomic instability. Faithful replication and packaging of newly replicated DNA are required for normal cell cycle control and proliferation. The tumor suppressor protein p53, the guardian of the genome, controls multiple cell cycle checkpoints and its loss leads to cellular transformation. Here we addressed whether the absence of p53 impacts the outcomes/consequences of Hinfp-mediated histone H4 deficiency. We examined mouse embryonic fibroblasts lacking both Hinfp and p53. Our data revealed that the reduced histone H4 expression caused by depletion of Hinfp persists when p53 is also inactivated. Loss of p53 enhanced the abnormalities in nuclear shape and size (i.e. multi-lobed irregularly shaped nuclei) caused by Hinfp depletion and also altered the sub-nuclear organization of Histone Locus Bodies (HLBs). In addition to the polyploid phenotype resulting from deletion of either p53 or Hinfp, inactivation of both p53 and Hinfp increased mitotic defects and generated chromosomal fragility and susceptibility to DNA damage. Thus, our study conclusively establishes that simultaneous loss of both Hinfp and the p53 checkpoint is detrimental to normal cell growth and may predispose to cellular transformation
Self-renewal of human embryonic stem cells is supported by a shortened G1 cell cycle phase
Competency for self-renewal of human embryonic stem (ES) cells is linked to pluripotency. However, there is a critical paucity of fundamental parameters of human ES cell division. In this study we show that human ES cells (H1 and H9; NIH-designated WA01 and WA09) rapidly proliferate due to a very short overall cell cycle (15-16 h) compared to somatic cells (e.g., normal diploid IMR90 fibroblasts and NT-2 teratocarcinoma cells). The human ES cell cycle maintains the four canonical cell cycle stages G1, S, G2, and M, but the duration of G1 is dramatically shortened. Bromodeoxyuridine (BrdU) incorporation and FACS analysis demonstrated that 65% of asynchronously growing human ES cells are in S phase. Immunofluorescence microscopy studies detecting BrdU labeled mitotic chromosomes, Ki67 domains, and p220(NPAT) containing Cajal bodies revealed that the durations of the S ( approximately 8 h), G2 ( approximately 4 h), and M phases ( approximately 1 h) are similar in ES and somatic cells. We determined that human ES cells remain viable after synchronization with either nocodazole or the anti-tumor drug Paclitaxel (taxol) and have an abbreviated G1 phase of only 2.5-3 h that is significantly shorter than in somatic cells. Molecular analyses using quantitative RT-PCR demonstrate that human ES cells and somatic cells express similar cell cycle markers. However, among cyclins and cyclin-dependent kinases (CDKs), we observed high mRNA levels for the G1-related CDK4 and cyclin D2 genes. We conclude that human ES cells exhibit unique G1 cell cycle kinetics and use CDK4/cyclin D2 related mechanisms to attain competency for DNA replication
Cell cycle dependent phosphorylation and subnuclear organization of the histone gene regulator p220(NPAT) in human embryonic stem cells
Human embryonic stem (ES) cells have an expedited cell cycle ( approximately 15 h) due to an abbreviated G1 phase ( approximately 2.5 h) relative to somatic cells. One principal regulatory event during cell cycle progression is the G1/S phase induction of histone biosynthesis to package newly replicated DNA. In somatic cells, histone H4 gene expression is controlled by CDK2 phosphorylation of p220(NPAT) and localization of HiNF-P/p220(NPAT) complexes with histone genes at Cajal body related subnuclear foci. Here we show that this \u27S point\u27 pathway is operative in situ in human ES cells (H9 cells; NIH-designated WA09). Immunofluorescence microscopy shows an increase in p220(NPAT) foci in G1 reflecting the assembly of histone gene regulatory complexes in situ. In contrast to somatic cells where duplication of p220(NPAT) foci is evident in S phase, the increase in the number of p220(NPAT) foci in ES cells appears to precede the onset of DNA synthesis as measured by BrdU incorporation. Phosphorylation of p220(NPAT) at CDK dependent epitopes is most pronounced in S phase when cells exhibit elevated levels of cyclins E and A. Our data indicate that subnuclear organization of the HiNF-P/p220(NPAT) pathway is rapidly established as ES cells emerge from mitosis and that p220(NPAT) is subsequently phosphorylated in situ. Our findings establish that the HiNF-P/p220(NPAT) gene regulatory pathway operates in a cell cycle dependent microenvironment that supports expression of DNA replication-linked histone genes and chromatin assembly to accommodate human stem cell self-renewal
Fidelity of Histone Gene Regulation is Obligatory for Genome Replication and Stability
Fidelity of chromatin organization is crucial for normal cell cycle progression and perturbations in packaging of DNA may predispose to transformation. Histone H4 protein is the most highly conserved chromatin protein, required for nucleosome assembly with multiple histone H4 gene copies encoding identical protein. There is a long-standing recognition of the linkage of histone gene expression and DNA replication. A fundamental and unresolved question is the mechanism that couples histone biosynthesis with DNA replication and fidelity of cell cycle control. Here, we conditionally ablated the obligatory histone H4 transcription factor Hinfp to cause depletion of histone H4 in mammalian cells. Deregulation of histone H4 results in catastrophic cellular and molecular defects that lead to genomic instability. Histone H4 depletion increases nucleosome spacing, impedes DNA synthesis, alters chromosome complement, and creates replicative stress. Our study provides functional evidence that the tight coupling between DNA replication and histone synthesis is reciprocal
Survival responses of human embryonic stem cells to DNA damage
Pluripotent human embryonic stem (hES) cells require mechanisms to maintain genomic integrity in response to DNA damage that could compromise competency for lineage-commitment, development, and tissue-renewal. The mechanisms that protect the genome in rapidly proliferating hES cells are minimally understood. Human ES cells have an abbreviated cell cycle with a very brief G1 period suggesting that mechanisms mediating responsiveness to DNA damage may deviate from those in somatic cells. Here, we investigated how hES cells react to DNA damage induced by ionizing radiation (IR) and whether genomic insult evokes DNA repair pathways and/or cell death. We find that hES cells respond to DNA damage by rapidly inducing Caspase-3 and -8, phospho-H2AX foci, phosphorylation of p53 on Ser15 and p21 mRNA levels, as well as concomitant cell cycle arrest in G2 based on Ki67 staining and FACS analysis. Unlike normal somatic cells, hES cells and cancer cells robustly express the anti-apoptotic protein Survivin, consistent with the immortal growth phenotype. SiRNA depletion of Survivin diminishes hES survival post-irradiation. Thus, our findings provide insight into pathways and processes that are activated in human embryonic stem cells upon DNA insult to support development and tissue regeneration
Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells
Induced pluripotent stem (iPS) cells derived from terminally differentiated human fibroblasts are re-programmed to possess stem cell like properties. However, the extent to which iPS cells exhibit unique properties of the human embryonic stem (hES) cell cycle remains to be established. Human ES cells are characterized by an abbreviated G1 phase ( approximately 2.5 h) and accelerated organization of subnuclear domains that mediate the assembly of regulatory machinery for histone gene expression [i.e., histone locus bodies (HLBs)]. We therefore examined cell cycle parameters of iPS cells in comparison to hES cells. Analysis of DNA synthesis (BrdU incorporation), cell cycle distribution (FACS analysis and Ki67 staining) and subnuclear organization of HLBs [immuno-fluorescence microscopy and fluorescence in situ hybridization (FISH)] revealed that human iPS cells have a short G1 phase ( approximately 2.5 h) and an abbreviated cell cycle (16-18 h). Furthermore, HLBs are formed and reorganized rapidly after mitosis (within 0.5 to 1.5 h). Thus, reprogrammed iPS cells have cell cycle kinetics and dynamic subnuclear organization of regulatory machinery that are principal properties of pluripotent hES cells. Our findings support the concept that the abbreviated cell cycle of hES and iPS cells is functionally linked to pluripotency. (c) 2010 Wiley-Liss, Inc