17 research outputs found

    Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Steroids in the Treatment of Adults With Metastatic Brain Tumors

    No full text
    QUESTION: Do steroids improve neurological symptoms and/or quality of life in patients with metastatic brain tumors compared to supportive care only or other treatment options? If steroids are given, what dose should be used? TARGET POPULATION: These recommendations apply to adults diagnosed with brain metastases. STEROID THERAPY VERSUS NO STEROID THERAPY: Asymptomatic brain metastases patients without mass effect Insufficient evidence exists to make a treatment recommendation for this clinical scenario. Brain metastases patients with mild symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. It is recommended for patients who are symptomatic from metastatic disease to the brain that a starting dose of 4 to 8 mg/d of dexamethasone be considered. Brain metastases patients with moderate to severe symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. If patients exhibit severe symptoms consistent with increased intracranial pressure, it is recommended that higher doses such as 16 mg/d or more be considered. CHOICE OF STEROID: Level 3: If corticosteroids are given, dexamethasone is the best drug choice given the available evidence. Duration of Corticosteroid Administration Level 3: Corticosteroids, if given, should be tapered as rapidly as possible but no faster than clinically tolerated, based upon an individualized treatment regimen and a full understanding of the long-term sequelae of corticosteroid therapy. Given the very limited number of studies (2) which met the eligibility criteria for the systematic review, these are the only recommendations that can be offered based on this methodology. The full guideline can be found at https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_7

    Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Steroids in the Treatment of Adults With Metastatic Brain Tumors.

    No full text
    QUESTION: Do steroids improve neurological symptoms and/or quality of life in patients with metastatic brain tumors compared to supportive care only or other treatment options? If steroids are given, what dose should be used? TARGET POPULATION: These recommendations apply to adults diagnosed with brain metastases. STEROID THERAPY VERSUS NO STEROID THERAPY: Asymptomatic brain metastases patients without mass effect Insufficient evidence exists to make a treatment recommendation for this clinical scenario. Brain metastases patients with mild symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. It is recommended for patients who are symptomatic from metastatic disease to the brain that a starting dose of 4 to 8 mg/d of dexamethasone be considered. Brain metastases patients with moderate to severe symptoms related to mass effect Level 3: Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. If patients exhibit severe symptoms consistent with increased intracranial pressure, it is recommended that higher doses such as 16 mg/d or more be considered. CHOICE OF STEROID: Level 3: If corticosteroids are given, dexamethasone is the best drug choice given the available evidence. Duration of Corticosteroid Administration Level 3: Corticosteroids, if given, should be tapered as rapidly as possible but no faster than clinically tolerated, based upon an individualized treatment regimen and a full understanding of the long-term sequelae of corticosteroid therapy. Given the very limited number of studies (2) which met the eligibility criteria for the systematic review, these are the only recommendations that can be offered based on this methodology. The full guideline can be found at https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_7

    Rising Incidence of Mucosal Melanoma of the Head and Neck in the United States

    No full text
    Background. While it is established that the incidence of cutaneous melanoma has risen over time in the United States, the incidence trend for mucosal melanoma of the head and neck (MMHN) is unknown. Methods. We used the Surveillance, Epidemiology, and End Results (SEER) database to determine incidence trends for MMHN from 1987 to 2009 in the United States. We determined annual percent change (APC) by weighted least squares and joinpoint regression analysis. Results. MMHN incidence increased from 1987 to 2009 (APC 2.4%; ). Nasal cavity lesions increased in incidence (APC 2.7%; ) over this duration, while the incidence of non-nasal cavity lesions remained stable. The highest rate of increase was in white females ages 55 to 84 (APC 5.1%; ). Conclusions. The incidence of MMHN in the United States has been rising since 1987. This trend is driven primarily by increased incidence of nasal cavity melanomas

    Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on the Role of Whole Brain Radiation Therapy in Adults With Newly Diagnosed Metastatic Brain Tumors

    No full text
    TARGET POPULATION: Adult patients (older than 18 yr of age) with newly diagnosed brain metastases. QUESTION: If whole brain radiation therapy (WBRT) is used, is there an optimal dose/fractionation schedule? RECOMMENDATIONS: Level 1:  A standard WBRT dose/fractionation schedule (ie, 30 Gy in 10 fractions or a biological equivalent dose [BED] of 39 Gy10) is recommended as altered dose/fractionation schedules do not result in significant differences in median survival or local control. Level 3: Due to concerns regarding neurocognitive effects, higher dose per fraction schedules (such as 20 Gy in 5 fractions) are recommended only for patients with poor performance status or short predicted survival. Level 3: WBRT can be recommended to improve progression-free survival for patients with more than 4 brain metastases. QUESTION: What impact does tumor histopathology or molecular status have on the decision to use WBRT, the dose fractionation scheme to be utilized, and its outcomes? RECOMMENDATIONS: There is insufficient evidence to support the choice of any particular dose/fractionation regimen based on histopathology. Molecular status may have an impact on the decision to delay WBRT in subgroups of patients, but there is not sufficient data to make a more definitive recommendation. QUESTION: Separate from survival outcomes, what are the neurocognitive consequences of WBRT, and what steps can be taken to minimize them? RECOMMENDATIONS: Level 2: Due to neurocognitive toxicity, local therapy (surgery or SRS) without WBRT is recommended for patients with ≤4 brain metastases amenable to local therapy in terms of size and location. Level 2:  Given the association of neurocognitive toxicity with increasing total dose and dose per fraction of WBRT, WBRT doses exceeding 30 Gy given in 10 fractions, or similar biologically equivalent doses, are not recommended, except in patients with poor performance status or short predicted survival. Level 2: If prophylactic cranial irradiation (PCI) is given to prevent brain metastases for small cell lung cancer, the recommended WBRT dose/fractionation regimen is 25 Gy in 10 fractions, and because this can be associated with neurocognitive decline, patients should be told of this risk at the same time they are counseled about the possible survival benefits. Level 3: Patients having WBRT (given for either existing brain metastases or as PCI) should be offered 6 mo of memantine to potentially delay, lessen, or prevent the associated neurocognitive toxicity. QUESTION: Does the addition of WBRT after surgical resection or radiosurgery improve progression-free or overall survival outcomes when compared to surgical resection or radiosurgery alone? RECOMMENDATIONS: Level 2: WBRT is not recommended in WHO performance status 0 to 2 patients with up to 4 brain metastases because, compared to surgical resection or radiosurgery alone, the addition of WBRT improves intracranial progression-free survival but not overall survival. Level 2: In WHO performance status 0 to 2 patients with up to 4 brain metastases where the goal is minimizing neurocognitive toxicity, as opposed to maximizing progression-free survival and overall survival, local therapy (surgery or radiosurgery) without WBRT is recommended. Level 3: Compared to surgical resection or radiosurgery alone, the addition of WBRT is not recommended for patients with more than 4 brain metastases unless the metastases\u27 volume exceeds 7 cc, or there are more than 15 metastases, or the size or location of the metastases are not amenable to surgical resection or radiosurgery. The full guideline can be found at: https://www.cns.org/guidelines/guidelines-treatment-adults-metastatic-brain-tumors/chapter_3

    Repeat Whole Brain Radiation Therapy with a Simultaneous Infield Boost: A Novel Technique for Reirradiation

    Get PDF
    The treatment of patients who experience intracranial progression after whole brain radiation therapy (WBRT) is a clinical challenge. Novel radiation therapy delivery technologies are being applied with the objective of improving tumor and symptom control in these patients. The purpose of this study is to describe the clinical outcomes of the application of a novel technology to deliver repeat WBRT with volume modulated arc therapy (VMAT) and a simultaneous infield boost (WB-SIB) to gross disease. A total of 16 patients were initially treated with WBRT between 2000 and 2008 and then experienced intracranial progression, were treated using repeat WB-SIB, and were analyzed. The median dose for the first course of WBRT was 35 Gy (range: 30–50.4 Gy). Median time between the initial course of WBRT and repeat WB-SIB was 11.3 months. The median dose at reirradiation was 20 Gy to the whole brain with a median boost dose of 30 Gy to gross disease. A total of 2 patients demonstrated radiographic disease progression after treatment. The median overall survival (OS) time from initial diagnosis of brain metastases was 18.9 months (range: 7.1–66.6 (95% CI: 0.8–36.9)). The median OS time after initiation of reirradiation for all patients was 2.7 months (range: 0.46–14.46 (95% CI: 1.3–8.7)). Only 3 patients experienced CTCAE grade 3 fatigue. No other patients experienced any ≥ CTCAE grade 3 toxicity. This analysis reports the result of a novel RT delivery technique for the treatment of patients with recurrent brain metastases. Side effects were manageable and comparable to other conventional repeat WBRT series. Repeat WB-SIB using the VMAT RT delivery technology is feasible and appears to have acceptable short-term acute toxicity. These results may provide a foundation for further exploration of the WB-SIB technique for repeat WBRT in future prospective clinical trials

    BCNU Wafer Placement With Temozolomide (TMZ) in the Immediate Postoperative Period After Tumor Resection Followed by Radiation Therapy With TMZ in Patients With Newly Diagnosed High Grade Glioma: Final Results of a Prospective Multi-Institutional Phase II Trial

    No full text
    Temozolomide (TMZ) and BCNU have demonstrated anti-glioma synergism in preclinical models. We report final data from a prospective, multi-institutional study of BCNU wafers and early TMZ followed by radiation therapy with TMZ in patients with newly diagnosed malignant glioma. 65 patients were consented in 4 institutions, and 46 patients (43 GBM, 3 AA) were eligible for analysis. After resection and BCNU wafer placement, TMZ began on day four postoperatively. Radiation and TMZ (RT/TMZ) were then administered, followed by monthly TMZ at 200 mg/m2 for the first 26 patients, which was reduced to 150 mg/m2 for the remaining 20 patients. Non-hematologic toxicities were minimal. Nine of 27 patients (33 %) who received 200 mg/m2 TMZ, but only 1 of 20 (5 %) who received 150 mg/m2, experienced grade 3/4 thrombocytopenia. Median progression free survival (PFS) and overall survival (OS) period was 8.5 and 18 months, respectively. The 1-year OS rate was 76 %, which is a significant improvement compared with the historical control 1-year OS rate of 59 % (p = 0.023). However, there was no difference in 1-year OS compared with standard RT/TMZ (p = 0.12) or BCNU wafer followed by RT/TMZ (p = 0.87) in post hoc analyses. Early post-operative TMZ can be safely administered with BCNU wafers following resection of malignant glioma at the 150 mg/m2 dose level. Although there was an OS benefit compared to historical control, there was no indication of benefit for BCNU wafers and early TMZ in addition to standard RT/TMZ or early TMZ in addition to regimens of BCNU wafers followed by RT/TMZ

    Visual acuity, oncologic, and toxicity outcomes with

    No full text
    PURPOSE: To evaluate outcomes of choroidal melanoma patients treated with METHODS AND MATERIALS: From 1993 to 2012, our institution treated 160 patients with RESULTS: Median followup was longer for CONCLUSIONS: Bot
    corecore