103 research outputs found

    Role of the Contralesional vs. Ipsilesional Hemisphere in Stroke Recovery

    Get PDF
    Following a stroke, the resulting lesion creates contralateral motor impairment and an interhemispheric imbalance involving hyperexcitability of the contralesional hemisphere. Neuronal reorganization may occur on both the ipsilesional and contralesional hemispheres during recovery to regain motor functionality and therefore bilateral activation for the hemiparetic side is often observed. Although ipsilesional hemispheric reorganization is traditionally thought to be most important for successful recovery, definitive conclusions into the role and importance of the contralesional motor cortex remain under debate. Through examining recent research in functional neuroimaging investigating motor cortex changes post-stroke, as well as brain-computer interface (BCI) and transcranial magnetic stimulation (TMS) therapies, this review attempts to clarify the contributions of each hemisphere toward recovery. Several functional magnetic resonance imaging studies suggest that continuation of contralesional hemisphere hyperexcitability correlates with lesser recovery, however a subset of well-recovered patients demonstrate contralesional motor activity and show decreased functional capability when the contralesional hemisphere is inhibited. BCI therapy may beneficially activate either the contralesional or ipsilesional hemisphere, depending on the study design, for chronic stroke patients who are otherwise at a functional plateau. Repetitive TMS used to excite the ipsilesional motor cortex or inhibit the contralesional hemisphere has shown promise in enhancing stroke patients' recovery

    Investigating the Blood Oxygenation Level-Dependent Functional MRI Response to a Verbal Fluency Task in Early Stroke before and after Hemodynamic Scaling

    Get PDF
    Background and objectiveBlood oxygenation level-dependent (BOLD) functional MRI (fMRI) has been extensively used as a marker of brain dysfunction and subsequent recovery following stroke. However, growing evidence suggests that straightforward interpretation of BOLD fMRI changes with aging and disease is challenging. In this study, we investigated the effect of calibrating task fMRI data by applying a hemodynamic calibration method using the resting-state fluctuation amplitude (RSFA). Task fMRI responses were obtained during a covert verbal fluency task in a group of early stage stroke patients and matched healthy normal controls.MethodsFifteen acute left hemisphere stroke patients (less than 7 days from stroke; aged 44–84 years, average ~64 years) and 21 healthy controls (aged 55–77 years, average ~61 years) were prospectively studied. All subjects completed a 3-min covert verbal fluency task, and a 10-min eyes-closed resting-state fMRI scan, from which the calibration factor (RSFA) was computed. A behavioral measure on the verbal fluency task was also collected outside the scanner. Whole brain activation volumes and region-of-interest (ROI)-wise percent signal change and activation volumes before and after calibration were computed.ResultsBetween-group differences in whole brain activation volumes, although statistically significant before calibration failed to be significant after calibration. There were significant within-group differences before and after calibration with RSFA. Statistically significant between-group differences on ROI-wise measures before calibration also significantly reduced after calibration. Exploratory brain-behavior correlations revealed a similar pattern: significant correlations before calibration failed to survive after calibration.Discussion and conclusionBOLD fMRI changes with aging and disease is confounded by changes in neurofunctional coupling leading to challenges in the straightforward interpretation of task fMRI results. Application of the hemodynamic calibration using the RSFA technique in the current study appeared to mitigate any differences between stroke and age-matched healthy controls. Our study indicates that estimating neural activity after applying hemodynamic scaling is important for studies of aging and for studies tracking post-stroke changes. We recommend that further investigation of hemodynamic calibration with RSFA in healthy subjects and in stroke in larger samples is necessary

    Assessment of nutritional value in selected edible greens based on the chlorophyll content in leaves

    Get PDF
    Chlorophyll is a kind of precious nutrition. It plays an indispensable and crucial rolein the life of human beings. In this study, chlorophyll pigments were estimated in selectedunderutilized edible greens to avail the nutritional values of this photosynthetic pigment.Chlorophyll estimation showed that Cardiospermum halicacabum contain higher chlorophyll content among the ten green leaf samples investigated followed by Amaranthus spinosus & Chenopodium album and least amount of chlorophyll was reported in Oxalis corniculata. Our results indicate that direct consumption of these edible greens either in raw or cooked state would benefit more than instead of going on for chlorophyll supplements or chlorophyll liquid solutions or chlorophyll tablets for nutritional benefits

    Differences in Diffusion Tensor Imaging White Matter Integrity Related to Verbal Fluency Between Young and Old Adults

    Get PDF
    Throughout adulthood, the brain undergoes an array of structural and functional changes during the typical aging process. These changes involve decreased brain volume, reduced synaptic density, and alterations in white matter (WM). Although there have been some previous neuroimaging studies that have measured the ability of adult language production and its correlations to brain function, structural gray matter volume, and functional differences between young and old adults, the structural role of WM in adult language production in individuals across the life span remains to be thoroughly elucidated. This study selected 38 young adults and 35 old adults for diffusion tensor imaging (DTI) and performed the Controlled Oral Word Association Test to assess verbal fluency (VF). Tract-Based Spatial Statistics were employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and local diffusion homogeneity (LDH) in 12 WM regions of interest associated with language production. To investigate group differences on each DTI metric, an analysis of covariance (ANCOVA) controlling for sex and education level was performed, and the statistical threshold was considered at p < 0.00083 (0.05/60 labels) after Bonferroni correction for multiple comparisons. Significant differences in DTI metrics identified in the ANCOVA were used to perform correlation analyses with VF scores. Compared to the old adults, the young adults had significantly (1) increased FA values on the bilateral anterior corona radiata (ACR); (2) decreased MD values on the right ACR, but increased MD on the left uncinate fasciculus (UF); and (3) decreased RD on the bilateral ACR. There were no significant differences between the groups for AD or LDH. Moreover, the old adults had only a significant correlation between the VF score and the MD on the left UF. There were no significant correlations between VF score and DTI metrics in the young adults. This study adds to the growing body of research that WM areas involved in language production are sensitive to aging

    Economic and Environmental Potentials of Conservation Agriculture in the Traditional Maize Farming Systems of India

    Get PDF
    Maize ranks among the most prominent crops of rainfed farming systems in India, grown under traditional farming practices. The major constraints in these farming systems include soil degradation, active erosion in sloping areas, poor-quality seeds, expensive and unreliable fertilizer supplies, labour shortages, competing uses for crop residues and animal manures, poor quality feeds and lack of efficient value chains. The overall goal of the paper is, hence, set to review the trends in rainfed maize production and report the potentials of Conservation Agriculture (CA) in sustaining the economy and ecology of maize farming system of rainfed areas of India

    Economic and Environmental Potentials of Conservation Agriculture in the Traditional Maize Farming Systems of India

    Get PDF
    Maize ranks among the most prominent crops of rainfed farming systems in India, grown under traditional farming practices. The major constraints in these farming systems include soil degradation, active erosion in sloping areas, poor-quality seeds, expensive and unreliable fertilizer supplies, labour shortages, competing uses for crop residues and animal manures, poor quality feeds and lack of efficient value chains. The overall goal of the paper is, hence, set to review the trends in rainfed maize production and report the potentials of Conservation Agriculture (CA) in sustaining the economy and ecology of maize farming system of rainfed areas of India

    DUAL-GLOW: Conditional Flow-Based Generative Model for Modality Transfer

    Full text link
    Positron emission tomography (PET) imaging is an imaging modality for diagnosing a number of neurological diseases. In contrast to Magnetic Resonance Imaging (MRI), PET is costly and involves injecting a radioactive substance into the patient. Motivated by developments in modality transfer in vision, we study the generation of certain types of PET images from MRI data. We derive new flow-based generative models which we show perform well in this small sample size regime (much smaller than dataset sizes available in standard vision tasks). Our formulation, DUAL-GLOW, is based on two invertible networks and a relation network that maps the latent spaces to each other. We discuss how given the prior distribution, learning the conditional distribution of PET given the MRI image reduces to obtaining the conditional distribution between the two latent codes w.r.t. the two image types. We also extend our framework to leverage 'side' information (or attributes) when available. By controlling the PET generation through 'conditioning' on age, our model is also able to capture brain FDG-PET (hypometabolism) changes, as a function of age. We present experiments on the Alzheimers Disease Neuroimaging Initiative (ADNI) dataset with 826 subjects, and obtain good performance in PET image synthesis, qualitatively and quantitatively better than recent works

    Association of high sensitive C-reactive protein (hsCRP) with established cardiovascular risk factors in the Indian population

    Get PDF
    Introduction Inflammation, the key regulator of C-reactive protein (CRP) synthesis, plays a pivotal role in atherothrombotic cardiovascular disease. Methods High sensitivity CRP (hsCRP) analysis was carried out in randomly selected 600 individuals from the sentinel surveillance study in Indian industrial population (SSIP). The hsCRP was measured quantitatively by turbid metric test using kits from SPINREACT, Spain. We analyzed the association between hsCRP and traditional CVD risk factors in this sub-sample. Results Complete risk factor data and CRP levels were available from 581/600 individuals. One half (51.2%) of the study subjects were males. Mean age of the study group was 39.2 ± 11.2 years. The Pearson correlation coefficients were in the range of 0.12 for SBP (p = 0.004) to 0.55 for BMI (p < 0.001). The linear regression coefficients ranged from 0.01 for SBP, PG and TC (p < 0.001) to 0.55 for logeTAG (p < 0.001) after adjustment for age, sex and education. The mean of logehsCRP significantly increased (P < 0.001) from individuals with ≤1 risk factors (-0.50) to individuals with three or more risk factors (0.60). In the multivariate model, the odds ratios for elevated CRP (CRP ≥ 2.6 mg/dl) were significantly elevated only in females in comparison to males (1.63, 95% CI; 1.02-2.58), overweight individuals in comparison to normal weight individuals (3.90, 95% CI; 2.34-6.44, p < 0.001), and abdominal obese individuals (1.62, 95% CI; 1.02-2.60, p = 0.04) in comparison to non-obese individuals. Conclusion Clinical measurements of adiposity (body mass index and abdominal obesity) correlate well and can be surrogate for systemic inflammatory state of individuals

    Evaluation of Changes in the Motor Network Following BCI Therapy Based on Graph Theory Analysis

    Get PDF
    Despite the established effectiveness of the brain-computer interface (BCI) therapy during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015; Remsik et al., 2016), little is understood about the connections between motor network reorganization and functional motor improvements. The aim of this study was to investigate changes in the network reorganization of the motor cortex during BCI therapy. Graph theoretical approaches are used on resting-state functional magnetic resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes. Correlations between changes in graph measurements and behavioral measurements were also examined. Right hemisphere chronic stroke patients (average time from stroke onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males, 10 right-handed) with upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI (rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners were collected from these patients at four test points. Immediate therapeutic effects were investigated by comparing pre and post-therapy results. Results displayed that th average clustering coefficient of the motor network increased significantly from pre to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor area (p = 0.02) and decreases in regional centrality of contralesional thalamus (p = 0.05), basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings suggest an overall trend toward significance in terms of involvement of these regions. Increased centrality of primary motor area may indicate increased efficiency within its interactive network as an effect of BCI therapy. Notably, changes in centrality of the bilateral cerebellum regions have strong correlations with both clinical variables [the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)
    corecore