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Despite the established effectiveness of the brain-computer interface (BCI) therapy

during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015;

Remsik et al., 2016), little is understood about the connections between motor network

reorganization and functional motor improvements. The aim of this study was to

investigate changes in the network reorganization of the motor cortex during BCI

therapy. Graph theoretical approaches are used on resting-state functional magnetic

resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes.

Correlations between changes in graph measurements and behavioral measurements

were also examined. Right hemisphere chronic stroke patients (average time from stroke

onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males,

10 right-handed) with upper-extremity motor deficits received interventional rehabilitation

therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI

(rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners

were collected from these patients at four test points. Immediate therapeutic effects

were investigated by comparing pre and post-therapy results. Results displayed that

th average clustering coefficient of the motor network increased significantly from pre

to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor

area (p= 0.02) and decreases in regional centrality of contralesional thalamus (p= 0.05),

basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree

centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings

suggest an overall trend toward significance in terms of involvement of these regions.

Increased centrality of primary motor area may indicate increased efficiency within its

interactive network as an effect of BCI therapy. Notably, changes in centrality of the

bilateral cerebellum regions have strong correlations with both clinical variables [the

Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)]
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INTRODUCTION

Eight lakhs Americans experience a stroke each year, a number
that is predicted to rise by 22% by 2030 (Go et al., 2013).
Recent medical advances have decreased stroke mortality rates
(Go et al., 2013). However, the growing number of stroke
survivors continue to struggle as their independence are
notably diminished. These survivors often suffer from persistent
functional deficits, resulting in billions of dollars of economic
costs each year (Towfighi and Saver, 2011). Kelly-Hayes et al.
(2003) shows that acquisition of a lasting motor impairment is
one of the most prominent sources of such functional deficits,
with up to 50% of survivors suffering from hemiparesis, and
26% requiring assistance with activities of daily living (ADLs)
6 months post-stroke. Consequently, this expanding population
of stroke survivors increases the demand for effective stroke
rehabilitation therapies and mechanistic break-down of stroke
recovery.

The most critical time-frame for significant post-stroke
recovery has been shown to occur within the first few months
following stroke onset (Stinear and Byblow, 2014). During this
period before plateauing around 6 months post-stroke (Wolf
et al., 2006, 2010; Dromerick et al., 2009; Cramer and Nudo,
2010), spontaneous biological recovery (SBR) plays a major role

in the complex process of motor recovery. spontaneous motor

and cognitive recovery may no longer occur within the same
manner as it is observed during SBR. Although patients in

the chronic stages of stroke recovery retain the capability of
neuroplasticity (Caria et al., 2011; Ang et al., 2015), traditional
therapies have not been effective after 6 months post-stroke. As a
result, chronic stroke survivors have fewer options for recovery.

In the absence of effective traditional rehabilitation therapy
for chronic stroke survivors, novel therapeutic techniques show
success in generating some functional motor recovery beyond
traditional rehabilitation window (Cramer and Nudo, 2010; Ang
et al., 2015; Irimia et al., 2016).

Brain-computer interface (BCI) therapy is being used
in non-traditional therapies for stroke rehabilitation. An
increasing number of studies indicate that with different neuro-
rehabilitative BCI therapy strategies, both acute and chronic
stroke patients can achieve significant changes in behavioral
measures [such as the Action Research Arm Test (ARAT), and
the Nine-Hole Peg Test (9-HPT)] of persistent upper extremity
(UE) impairment (Young et al., 2014a,b; Irimia et al., 2016;
Remsik et al., 2016). One such strategies that was applied in
the ongoing clinical trial [(NCT02098265) interventional, non-
invasive closed-loop electroencephalography (EEG) based BCI
therapy for the restoration of distal UE motor function in stroke
survivors Song et al., 2014a, 2015; Young et al., 2014a,b,c,d, 2015;
Remsik et al., 2016] is to use electroencephalography (EEG) to
detect neural activity. The signals from the EEG are translated
into a video-game simulation which responses to user’s neural
patterns. The video game simulation provides real-time feedback
which allows the user to observe and learn to modulate their
brain activity. This method may stimulate neuroplastic changes
and exploit any recovery potential that remains after a patient
reaches a functional plateau with traditional therapies.

BCI therapies are designed to reward the consistent
production of specific brain activity patterns relative to other
patterns in the context of an intended task. While growing
number of studies (Muralidharan et al., 2011; Song et al.,
2014a, 2015; Young et al., 2014a,b,c,d, 2015; Irimia et al., 2016)
have shown the effectiveness of BCI therapies in rehabilitating
volitional movements in stroke survivors, little is known about
the network reorganization patterns that occur in stroke patients
by such therapies.

Overview of This Study
The aim of this study was to determine topological changes in the
motor network of chronic stroke patients who participated in BCI
therapy. Task-free (resting-state) fMRI was chosen to map brain
network changes as it is easily acquired on all patients irrespective
of the degree of impairment. In order to evaluate reorganization
of the motor network, a pure data-driven methodology known
as the graph theoretical analysis was applied. The graph theory
has been recognized in recent years as a novel method to study
functional networks of the brain (Bullmore and Sporns, 2009;
Wang et al., 2010).

The fundamental basis of graph theory is to represent
a network in terms of nodes (or vertices) and links (or
edges) between pairs of nodes. This approach helps researchers
to describe topologies of complex networks by quantifying
properties of a network (Wang et al., 2010). When representing a
large-scale brain networks in this way, nodes are usually defined
as anatomical brain regions and links can be represented as
functional connectivity (FC) between these nodes, in which FC is
defined as themagnitude of temporal correlation of the activity of
two brain regions (Boccaletti et al., 2006). Functional segregation
and integration have been recognized as the two most important
principles when considering networks in the human brain (Wang
et al., 2010). Graph theoretical methods also enable researchers
to evaluate hubs in a network (Wang et al., 2010). In a complex
network, hubs have an essential importance in controlling over
flowing information.

In this study, functional segregation and integration of the
executive motor network was examined via clustering coefficient
(measure of segregation) and shortest path lengths of the network
(measures of the integration) (Bassett and Bullmore, 2006), and
two measures of centralities (i.e., betweenness centrality and
degree centrality) was used to evaluate alteration of hubs.

The main hypotheses in this study were:

I. Gradual improvement in the ipsilesional primary
sensorimotor cortex during the stroke recovery–potentially
as a result of SBR–has been observed in recent longitudinal
studies (Carey et al., 2002; Wang et al., 2010). An increase
in the regional centrality of the ipsilesional primary
sensorimotor following the administration of BCI therapy
was hypothesized.

II. Behavioral measurements (i.e., ARAT and 9-HPT) were
predicted to be correlated with changes in the topology of the
motor network. Specifically, it was hypothesized that changes
in graph properties (regional centrality, etc.) will correlate
with gains in motor function. Similar associations between
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regional centralities of the motor network and improvement
in some clinical outcomes have been reported in spontaneous
stroke recovery during the acute stroke stage (Wang et al.,
2010). Also the association with improvement in the pattern
of activity in fMRI data and improvement in some clinical
variable during chronic stage has been observed previously
(Carey et al., 2002; Gauthier et al., 2008; Richards et al., 2008).

MATERIALS AND METHODS

Recruitment Methods, Exclusion Criteria,
and Ethic Statement
Thirteen patients who suffer from persistent upper extremity
motor impairment caused by ischemic or hemorrhagic stroke
were enrolled for the BCI therapy. All of these subjects were
recognized as proper for participation in this study by one or
more physicians at the University of Wisconsin Hospital and
Clinics. Patients with concurrent neurodegenerative disorders,
such as dementia, or other neurological or psychiatric disorders,
such as epilepsy, schizophrenia, or substance abuse, were
excluded from this study. All subjects provided written informed
consent. This study was approved by the Health Sciences
Institutional Review Board of the University of Wisconsin–
Madison. Participant characteristics are summarized in Table 1.

Randomization and Study Paradigm
All participants in this study were randomly assigned to one
of two groups (BCI therapy group or crossover control group)
using a permuted-block design accounting for gender, stroke
chronicity, and severity of motor impairment. Those in the BCI
therapy group immediately received interventional rehabilitation
therapy using the BCI device with functional assessment andMRI
scanning at four time points: before the start of BCI therapy (Pre
therapy), at the midpoint of BCI therapy, upon completion of all
BCI therapy (Post therapy), and 1 month following the last BCI
therapy session. Those in the crossover control group completed
three additional functional assessments and MRI scans during

the control phase of the study and then crossed over to complete
the same BCI therapy phase of the study as the first group.
For more information about the study paradigm and details
about interventions, please refer to Young et al. (2014a). Data
analyzed in this paper is from the intervention phase for both
groups and using only two time points: before therapy (or therapy
baseline) and post-therapy. This is because several of our studies
have shown the most significant gains following therapy at these
time-points (Young et al., 2014b,d; Remsik et al., 2016).

Functional Assessments
Subjects’ motor function of the impaired arm was assessed
with behavioral objective measures. These measures included
subjects’ performance in the Action Research Arm Test (ARAT)–
a standardized series of scored movements designed to evaluate
upper extremity motor function in the domains of grip, grasp,
strength, and gross movement (Carroll, 1965; Beebe and Lang,
2009; Young et al., 2014b), and the Nine-Hole Peg Test (9-HPT)–
a timed task in which the subject attempts to first place the pegs
in each of the 9 holes on a pegboard and then removes each peg
using only one hand (Carroll, 1965; Young et al., 2014b). These
scores were standardized as follows: scores for the ARAT were
reported as the total points scored when using the impaired hand,
and scores for 9-HPT were taken as an average of two timed trials
using the impaired hand (Young et al., 2014b).

At each of the visits for behavioral evaluation, anatomical and
functional MRI scans were also obtained for each subject.

Image Acquisition and Processing
MRI data were collected on 3 Tesla GEMR750 scanners equipped
with high-speed gradients (Sigma GE Healthcare, Milwaukee,
Wisconsin) using an 8-channel head coil. In order to minimize
head movements, padding was used around each subject’s
head. Ten minutes resting-state (R-s) fMRI data were collected
using a T2∗-weighted gradient-echo planar imaging (EPI) pulse
sequence sensitive to BOLD contrast. Technical parameters used
to acquire these EPI scans were as follows: field of view 224mm,

TABLE 1 | Clinical and demographic data.

ID Infarcted

hemisphere

Localization of infarct ARAT affected hand Score 9-HPT Score

1 Right Temporal, Frontal 3 3 29.31 21.06

2 Right Occipital 57 57 27.5 22.99

3 Right Temporal, Frontal 9 10 37.12 32.52

4 Right Frontal 3 16 20.93 20.6

5 Right Putamen – – 24.61 23.62

6 Right Pons 27 40 30.51 28.00

7 Right Cerebellum 57 57 26.48 21.79

8 Right PLIC putamen 23 40 26.69 20.71

9 Right Prefrontal, Midfrontal, Temporal – – 37.84 34.97

10 Right Internal capsule, Thalamus 56 57 20.05 18.22

11 Right Frontal, Parietal 7 7 19.46 18.62

12 Right Frontaltemporal, Occipital 3 4 20.29 18.58

13 Right Anterior temporal, Frontoparietal 0 2 26.77 24.25
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matrix 64× 64, TR 2600ms, TE 22ms, flip angle 60◦, and 40 axial
plane slices of 3.5mm thickness with 3.5mm spacing between
slices. A T1-weighted high-resolution anatomical image was also
obtained for each subject using a BRAVO FSPGR pulse sequence.
Technical parameters used to acquire these scans are as follows:
field of view 256mm, matrix 256× 256, TR 8.16ms, TE 3.18ms,
flip angle 12◦, and 156 axial plane slices of 1mm thickness with
1mm spacing between slices.

R-s fMRI data were processed using the AFNI package
(Cox, 1996). Images were despiked, slice time-corrected, motion-
corrected, aligned with the anatomical scan, normalized to MNI
space, re-sampled to 3.5mm, and spatially smoothed with a 4mm
FWHM Gaussian kernel. Motion censoring (per TR motion >

1mm or 1◦), nuisance regression, and bandpass filtering (0.009–
0.08Hz) were performed simultaneously in one regression
model. Nuisance signals that were regressed out included six
motion estimates and their temporal derivatives, the voxel-
wise locally averaged white matter signal, and the cerebrospinal

fluid signal. Global signal regression was omitted due to the
controversial position associated with it in the literature (Murphy
and Fox, 2017).

Graph Construction
Figure 1 illustrates the standard procedure of graph theory
analysis applied on f-MRI data that has been well-stablished
and used in many studies (Humphries et al., 2006; Achard and
Bullmore, 2007; He et al., 2008; Bullmore and Sporns, 2009, 2012;
Meunier et al., 2009; Alexander-Bloch et al., 2010; VanWijk et al.,
2010; Wang et al., 2010; Bernhardt et al., 2011; De Vico Fallani
et al., 2014; Song et al., 2014b). Reign of interest (ROI) from the
network under investigation is first identified. These ROIs would
be nodes in the graph. Then the correlation matrix (or functional
connectivity (FC) matrix) between these ROIs is acquired using
temporal correlations among all ROIs. Next, the proportional
thresholding is applied to exclude weak or irrelevant FCs from
the analysis of the graph. A threshold value in the context of

FIGURE 1 | Pipeline for the graph theory analysis applied on functional brain network. Red rectangulars specify the submethodology used in this study at each step.

Nodes correspond to specific region in the brain (predifined ROI in our study). Links are estimated by measuring the FC between different regions in the brain

(undirected links); connectivity matrix would be constructed using this information. By means of filtering procedures, based on thresholds, only the most important

links constitute the brain graph. The topology of the brain graph is quantified by different graph metrics that can be represented as numbers. These graph indices can

be input to statistical analysis in order to look for significant differences between populations/conditions (e.g., red points correspond to brain graph indices of diseased

patients or tasks, blue points stand for healthy subjects).
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proportional thresholding (known as network sparsity) is defined
as the number of correlations that is considered as connections in
the final graph divided by number of all possible correlations exist
in the correlation matrix (Latora and Marchiori, 2001; Achard
et al., 2012). After proportional thresholding and excluding weak
FCs, each remaining FC is identified as a link (or edge) between
its associated ROIs and the graph is constructed. From this graph,
topological properties of the network under investigation can be
evaluated.

Optimally thresholding correlation matrix to only include
important FCs is critical in this methodology. Having too few FCs
may obscure group differences, whereas too many FCs may lead
to a random graph structure (Humphries et al., 2006). However,
applying this method on a brain network model has a potential
to move the graphical model away from the actual network
that it represents. In the section Preserving graph connectedness
and network thresholding, this limitation of the thresholding is
explained and a technique (the Maximum Spanning Tree, MST)
to circumvent this potential limitation is introduced.

In the following subsections, the criterion for choosing ROIs
in our study is explained, and the proportional thresholding is
discussed in more details.

Regions of Interest in Executive Motor
Network
Twenty-one anatomical ROIs associated with the motor
execution network were defined by creating 5mm diameter
spheres around coordinates for regions in the motor network
previously defined by Wang et al. (2010) (Table 2). One ROI
(located in the right ventrolateral premotor cortex) was excluded
due to overlap with subject’s stroke lesions. The 20 ROIs
include the primary motor cortex, bilateral superior parietal
lobule, bilateral basal ganglia, bilateral thalamus, anterior inferior
cerebellum, postcentral gyrus, and dentate nucleus (Wang
et al., 2010). These ROIs were used to derive Pearson’s R
correlation coefficient matrices from each subject’s r-s fMRI,
using AFNI’s doROICorrMat command. Fisher z transform was
then applied on R correlations across each patient and used z-
score correlation matrices in further analysis (Since hypotheses
about the significance of the population correlation wanted to
be evaluated, Fisher z-score was more proper than r-correlation
value). In this study, the alteration in the magnitude of the
functional connections was tended to be evaluated; hence,
absolute values of these matrices were used in all analyses.

Preserving Graph Connectedness and
Network Thresholding
As it is described earlier in this section, applying thresholding
without any consideration for the reality of the circulation
of information in the network has some potential issues.
Thresholding raises two critical issues; (1) It may lead the
final graph to be disconnected–in which a region that is part
of the brain network will be left without any connection to
any other region in the graph, (2) In addition, there is no
comprehensive agreement in the field on the cutoff value above
which correlations should be considered as edges.

TABLE 2 | Regions of interest for the motor network.

ID Region Abbreviation Side MNI coordinate

x y z

1 Superior cerebellum SCb R 16 −59 −21

2 Primary motor cortex M1 L −38 −22 56

3 Primary motor cortex M1 R 38 −22 56

4 Thalamus Th L −10 −20 11

5 Superior parietal lobule SPL L −22 −62 54

6 Supplementary motor area SMA L −5 −4 57

7 Supplementary motor area SMA R 5 −4 57

8 Dorsolateral premotor cortex PMd R 28 −10 54

9 Ventrolateral premotor cortex PMv L −49 −1 38

10 Superior cerebellum SCb L −25 −56 −21

11 Superior parietal lobule SPL R 16 −66 57

12 Dentate nucleus DN R 19 −55 −39

13 Anterior inferior cerebellum AICb L −22 −45 −49

14 Anterior inferior cerebellum AICb R 16 −45 −49

15 Postcentral gyrus PCG R 37 −34 53

16 Dorsolateral premotor cortex PMd L −22 −13 57

17 Basal ganglia BG R 22 −2 12

18 Basal ganglia BG L −25 −14 8

19 Thalamus Th R 7 −20 11

20 Dentate nucleus DN L −28 −55 −43

MNI, Montreal Neurological Institute; R, Right; L, Left.

To address the first issue a growing number of studies have
used the maximum spanning tree (MST) method (Alexander-
Bloch et al., 2010; Achard et al., 2012; Song et al., 2014b; Iyer et al.,
2018). An MST is a weighted spanning tree that would serve as
a backbone for the main graph. In this method, to calculate the
existing tree in the graph with the maximum weights, N-1 FCs
is chosen by the prime algorithm to connect all N nodes of the
network together.

As for the second issue, analysis of the graph in the whole-
network level (such as evaluation of the shortest path length,
clustering coefficient, small-worldness, etc.) has been done in
various numbers of threshold values in almost all previous studies
(Loui et al., 2012; Rutter et al., 2013; Vaessen et al., 2014; He et al.,
2017). This was to capture a proper and complete understanding
of the network topology.

For regional properties of the network (e.g., centrality, or
local efficiency) however, there is still a debate about the proper
threshold value. For instance, Bullmore and his colleagues
(Bullmore and Sporns, 2012) believe that each node in a graph
conforms to the profile of its realistic brain region only in small
threshold values not more than 16% (same thresholding criteria
has been used in Meunier et al., 2009). Another example is Iyer
et al. (2018) in which the author used 6% as the threshold value.
However, in the growing numbers of studies researchers have
used all significant correlations to construct the brain graphical
model (Alexander-Bloch et al., 2010; Wang et al., 2010; Achard
et al., 2012; Song et al., 2014b).

In this study, all significant correlations were used to generate
the graph of each patient’s brain in order to analysis of regional

Frontiers in Neuroscience | www.frontiersin.org 5 November 2018 | Volume 12 | Article 861

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Mazrooyisebdani et al. Motor Network Alteration Following BCI-Based Therapy

properties. From each patient’s connectivity matrix, z-values >

1.96 (two-tailed significant value for z-score) were used as the
threshold to identify percentage of correlations that are above
this threshold, i.e., the ratio of significant connections to all the
possible connections were calculated (Supplementary Figure 1).
By this approach, it has been found that the minimum sparsity
was more than 42%. Hence, the sparsity threshold of 42% was
used to convert connectivity matrices into weighted networks.

In summary, after applying the MST and extracting
the backbone, any other FCs identified as a connection
in the thresholding step are added to this tree to get
weighted undirected connection matrices that represent a sparse,
connected, and biologically meaningful graph for each patient
(Song et al., 2014b).

While most of brain network studies have investigated the
brain’s topology by analyzing binaries graph (in which every edge
in the network has an equal weight of 1), here alteration in the
executive motor network was evaluated by a weighted network
analysis approach, in which every edge in the network has a
weight equal to its equivalent FC in the connectivity matrix, and
hence the network would contain more information about the
actual brain circuity.

Graph Measurements
Weighted Clustering Coefficient and Weighted

Shortest Path Length
The clustering coefficient (C) is a measure of the degree to
which nodes in a graph tend to cluster together (Watts and
Strogatz, 1998). For an undirected weighted graph, the clustering
coefficient of a node i (ci) is defined as follows:

Ci =
1

Si(Ki − 1)

∑

(j,k)

Wij +Wik

Here, Si is the strength of the node i (defined as sum of the FC
between node i and other regions), Wij is the FC between node i
and node j, and Ki is the number of edges connected to the node
I. The sum over (j,k) carries out sum of weights for any two pairs
of j and k connected to the node i (Wang et al., 2010; Bernhardt
et al., 2011).The clustering coefficient over all nodes in a network
is then defined as:

C =
1

N

N∑

i=1

ci

The characteristic path length (L) reflects the level of global
integration in the network. A shortest path between two nodes
A and B is the path between A and B with the smallest number
of edges. The characteristic path length li of a node i is defined as
Watts and Strogatz (1998):

li =
1

N − 1

∑

i6=j

min {Iij}

Where min {Iij} is the shortest path length between the ith and
jth nodes. The characteristic path length L of a network is then

defined as the mean of characteristic path lengths over all nodes
in the network:

L =
1

N

N∑

i=1

li

Regional Centrality Measurements
In network analysis, indicators of centrality identify the most
important nodes within a graph (Brandes, 2001). In the present
study, each node’s importance in the network was evaluated using
degree centrality and betweenness centrality.

Degree centrality (DC) counts the number of neighbors of
each node. In this context, a node with higher degree centrality,
would have more FCs with other parts of the network and hence
is more involved in the network communication.

Betweenness centrality (BC) captures the influence that one
node has over the flow of information between all other nodes in
the network. The betweenness centrality of a node v is calculated
as follows (Brandes, 2001):

BC (v) =
∑

S6=v 6=t

σst (v)

σst

Where σst is the total number of shortest paths from node s to
node t and σst(v) is the number of shortest paths from node s to
node t that passes through node v. A node with high centrality
is considered to be a hub in the network. Since this summation
scales with the number of pairs of nodes, the quantity is rescaled
and normalized by the average of BC over all nodes (Wang et al.,
2010).

In this work, all graph measurements were calculated by using
the Brain Connectivity Toolbox (2016) in MATLAB R2015.

Statistical Analysis
All tests between two time-points were assessed using non-
parametric Wilcoxon signed-rank test. For all statistical tests
α was set to 0.05 and then for each family of tests (i.e., tests
of betweenness centrality, degree centrality, and correlations),
correction for multiple comparisons were performed separately
using false discovery rate (FDR) (Benjamini and Hochberg,
1995). All p-values reported in this study are unadjusted p-
values (i.e., p-values are not FDR adjusted p-values, also known
as q-values) and after FDR correction, any significant test was
reported and marked with asterisk in the figures and tables.
Tests with p-values < 0.07 were also considered trend toward
significance and marked with plus in figures and tables.

RESULTS

Participant Characteristics and Behavioral
Outcomes
The average age of the 13 participants in this study was 64.92
years (SD= 12.19 years), and the average time from stroke onset
was 38.23 months (SD = 46.28 months). Of the 13 patients, two
patients were unable to perform the ARAT (Table 1). For the
other participants, a Wilcoxon sign rank test was performed on
each of the behavioral scores (i.e., 9-HPT, and ARAT) (Figure 2).
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FIGURE 2 | The longitudinal changes of patients’ performance in (A) ARAT, and (B) 9-HPT scores analyzed via Wilcoxon signed-rank test. 9-HPT, Nine-Hole Peg

Test; ARAT, Action Research Arm Test. *Indicates that p-value is significant (p <0.05).

Compared to pre-therapy, both the 9-HPT and ARAT scores
demonstrated significant recovery (p = 0.0156 for ARAT and
p= 0.0002 for 9-HPT).

Adjacency Matrices
Changes in group-level FCs between two scans were evaluated
by median–a more robust measure of central tendency compared
to mean–of each group’s z-score connectivity matrices. As
depicted in Figure 3, patients showed higher FCs among the
contralesional subcortical regions (thalamus and basal ganglia)
and other contralesional sensorimotor regions before therapy
(Figure 3B). The median metric after therapy showed a decrease
in the FCs of these regions while ipsilesional sensorimotor and
subcortical regions of the motor network showed increased their
FC with other parts of the network (this is clear from comparing
the entries in the bottom right of the matrix in Figure 3D with
same entries of the matrix in Figure 3B).

Global Network Parameters
Analysis of the shortest path length of the brain network showed
no significant differences at any sparsity level over the study
period (Figure 4B).

For the clustering coefficient (Figure 4A), mean clustering
coefficient at post-therapy showed significant increase,
comparted to pre-therapy, across several threshold values.
Specifically, the network consisting of strongest FCs (sparsity
lower than 12% in Figure 4B) showed no significant difference
from pre to post. However, after including more mild edges
(network sparsity between 12 and 36%), clustering coefficients
in post-therapy gradually increased, and the gap between each
time-point’s distribution broadened as the sparsity increased.

Local Centrality Parameters
Betweenness centrality showed a trend toward significant
increase from pre to post-therapy (Figure 5A) in the ipsilesional
primary motor cortex (p = 0.0201). While the contralesional

dentate nucleus, basal ganglia, and the thalamus in post-therapy
showed a trend toward significant decrease in BC compared
to pre-therapy (p = 0.0324, p = 0.0502, and p = 0.0537,
respectively).

Changes in the degree centrality of the motor network over
the study period were investigated (Figure 5B). Results indicate
that compared to pre-therapy, the degree centrality of the
contralesional dentate nucleus (p = 0.0593) and basal ganglia
(p= 0.0334) decreased over the study period.

Behavioral Correlations With Changes in
Network Parameters
To examine the behavioral implications of the changes in
graph theoretical measures, the linear associations between
changes in network parameters and actual recovery reflected
in the behavioral assessments were examined. A summary of
Pearson’s correlations between changes in outcome measures
(ARAT and 9-HPT scores) and changes in network parameters
found to be significant or showing a trend toward significance
after FDR correction is presented in Table 3. The majority of
these relationships involved the bilateral cerebellum. Changes in
centrality of the contralesional anterior inferior cerebellum were
highly correlated with both objective measurements (ARAT and
9-HPT). Figure 6 presents graphs of the relationships that were
found to be significant.

DISCUSSION

Effectiveness of rs-fMRI in Evaluation of
Recovery in Stroke
This study demonstrates the effectiveness of rs-fMRI using
graph theoretical methods to capture brain changes during the
stroke recovery following rehabilitative therapy. rs-fMRI requires
about 10min for image acquisition without any exogenous task
demands on the subject. This method is particularly well-suited
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FIGURE 3 | (A) Median z-score of r-correlation matrices in pre-therapy. (B) Median z-score of r-correlation matrices for pre-therapy at threshold value = 42%.

(C) Median z-score of r-correlation matrices in post-therapy. (D) Median z-score of r-correlation matrices for post-therapy at threshold value = 42%. R = Right,

L = Left. See Table 2 for the abbreviations of the regions. Note that the correlation matrices presented only serve as a visual representation, and are not corrected for

multiple comparisons.

for stroke patients, who often suffer from motor impairment and
hence may not be capable of doing specific tasks during MR
scanning.

Impact of BCI-Based Stroke Rehabilitation
on FC Among Regions of the Motor
Network
This study shows that during the course of BCI therapy, the
motor network strengthens its FC among different regions
mostly in the ipsilesional part of the network. A similar study
(Wang et al., 2010) in patients with subcortical infarcts in acute
stage of recovery found significantly decreased FC involving

the contralesional subcortical structures (such as the thalamus)
during the recovery. Findings in the study highlights a similar
pattern of decreasing median of FC in these regions (Figure 3,
z-score connection matrices of left thalamus for pre-therapy
Figure 3A compared to post-therapy Figure 3C). From this
result, it seems that during the period of therapy, ipsilesional
cortical and subcortical regions in the network have strengthened
their FCs with other parts of the network.

Graph Theory as a Tool to Evaluate Stroke
Recovery
Several studies have shown changes in the brain activation and
functional connectivity following BCI therapy (Young et al.,
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FIGURE 4 | Changes in clustering coefficient (A) and average shortest path length (B) from pre-therapy (Blue) to post-therapy (red) across range of networks’

sparsity. Vertical lines denote the standard deviation of each group. Statistical analyses were carried out using Wilcoxon signed-rank test. *Indicates significant after

correction for multiple comparison.

2014a,b). The focus in this study was on investigating brain
reorganization using network analysis methods. Specifically,
graph theoretical methods were used to capture topological
properties associated with therapy over time. Previous study
(Wang et al., 2010) have used this mathematical method to

determine changes in patients who were in the acute stage of
stroke, when abnormal changes are more observable. Here, this

method has been used to identify abnormal changes in chronic
stroke patients with average time since stroke onset of 38.23

months. Results of this study demonstrate the efficacy of this

method in detecting brain network changes in stroke patients
over time following rehabilitative therapy.

Effect of BCI-Based Therapy on the
Large-Scale Motor Network
Changes in the topology of the motor network has been
determined on a larger scale by evaluating the average clustering
coefficients and the average shortest path lengths across all
regions in the network. Results highlight that during the course
of therapy, the clustering coefficient of the network increases
significantly across different network sparsities (Figure 4). The
higher clustering coefficient suggests that the brain follows
principles of efficient network structures (Watts and Strogatz,
1998). Therefore, BCI therapy might help the motor network to
facilitate more enhanced communication between communities
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FIGURE 5 | Changes in betweenness centrality (A) and degree centrality (B) measures from pre-therapy (Blue) to post-therapy (Red) across all regions in the network

calculated at a density level of 42% analyzed via Wilcoxon signed-rank test. R, Right, L, Left. See Table 2 for the abbreviations of the regions. + trend toward

significance (i.e., raw p-value < 0.07). P-values are round up with 2 integers in order to be shown in the figure.
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TABLE 3 | Correlation analysis between centrality changes and behavioral

changes from pre- to post-BCI therapy assessments.

Behavioral

measure

Graph measure Pearson

R-value

P-value

ARAT L.AIcb (BC) 0.8295 *0.0016

ARAT R.Scb (BC) −0.6832 +0.0205

ARAT R.BG (BC) 0.6458 +0.0318

ARAT L.AIcb (DC) 0.6022 +0.0499

9-HPT R.BG (BC) 0.7400 *0.0038

9-HPT R.DN (BC) 0.5720 +0.0411

9-HPT L.AIcb (DC) −0.5589 +0.0471

9-HPT R.BG (DC) 0.6237 +0.0227

ARAT, Action Research Arm Test; 9-HPT, 9-Hole Peg Test; R, Right; L, Left; *Significant

p-value after correction for multiple comparison with FDR, + trend toward significant (i.e.,

p < 0.07). See Table 2 for the abbreviations of the regions.

of nodes (i.e., nodes sharing similar neighbors), resulting in faster
transmission of information between brain regions.

Alteration in Regional Centrality
Alterations in the importance of different regions in the
motor network have been investigated in our study. The
word “importance” has different meaning in different contexts,
leading to different definitions of centrality (Borgatti, 2005).
The importance of regions in facilitating information transfer
within the network were evaluated using two different forms of
centralities. Degree centrality, in the group of radial centralities
(Borgatti and Everett, 2006), computes the number of edges
connected to each node. This definition of centrality is
particularly attractive, since a change in degree centrality is
associated with a decrease or increase in the number of significant
FCs of that node. A trend toward significant Decrease in degree
centrality of the contralesional basal ganglia (p = 0.03) were
observed in our study, similar pattern was observed in Wang
et al. (2010). Also, a trend toward significant decrease (p = 0.06)
has been found in the degree centrality on contralesional dentate
nucleus.

This study also investigated the hub properties of nodes from
the viewpoint of betweenness centrality. Betweenness centrality
is a measure of the functional importance of a node in terms
of being a bridge for information processing. In this context,
most of the information flowing in the network passes through
a node with high BC. Results showed a trend toward significant
increased BC in the ipsilesional primary motor cortex (p= 0.02),
which is similar to other studies (Wang et al., 2010), (Dong et al.,
2007). Also, a trend toward significant decrease has been found in
BC of contralesional subcortical regions (e.g., thalamus and basal
ganglia). The decrease of BC in the contralesional dentate nucleus
(p = 0.03) seen in our study was not observed in Wang et al.
(2010). This may be due to the differences in study samples, with
chronicity and stroke location in the patients varying between the
two studies.

These findings suggest an increase in the role of ipsilesional
primary motor area as a hub during the period of therapy. The
increased important of ipsilesional primary motor areas may

instigate the gradual recovery of contralesional affected hand in
terms of contralateral motor control. Also it suggests a decrease
in the role of the contralesional subcortical and cerebellum
regions following therapy. One possible explanation for these
findings might be that the recovery of overall brain connectivity
in the ipsilesional subcortical and cerebellum regions. In other
words, the connections going through the ipsilesional subcortical
and cerebellum regions become stronger as a result of the
therapy. This recovery might lead to a decreased role for the
contralesional subcortical and cerebellar regions in transferring
information within the motor network.

Correlations Between Brain Network
Changes and Behavioral Outcomes
Significant correlations between changes in centrality measures
and changes in behavioral outcome measures are consistent
with the view that the motor network changes with BCI
therapy to facilitate information transfer between key regions
in the motor network. Significant positive correlations between
centrality of specific regions (e.g., anterior inferior cerebellum,
and basal ganglia) and performance on the ARAT suggest
that behavioral performance improves as the centrality of these
regions increases. Similarly, significant negative correlations
between centrality and 9HPT suggest that as centrality increases,
processing time is reduced (i.e., time taken to perform the 9HPT
is decreased). Interestingly, results showed similar correlations
between centrality of the bilateral cerebellar regions and
behavioral performance to that reported byWang et al. (2010), in
which the authors used the same ROIs. Also results from Dong
et al. (2007) show reorganization of adaptive activity within the
primarymotor cortex and the cerebellum is in relation to relevant
behavioral changes of patients with the upper extremity.

Cerebellar activity is solely associated with ipsilateral motor
actions (Shibasaki et al., 1993; Allen et al., 1997). Addition studies
have displayed that increased contralesional cerebellar activity is
linked with the restoration of motor function (Chollet et al., 1991;
Jaillard et al., 2005). Small et al. (2002) study further indicated
that the larger the contralesional cerebellar activation, the better
the recovery is Small et al. (2002). The results from this research
study also mimic this trend.

However, it is common in individuals with upper-extremity
motor impairments to overuse the unaffected arm more which
may result in increases of centrality of the ipsilesional cerebellum.
The negative correlation found between the centrality of
ipsilesional superior cerebllum and ARAT performance—and
ipsilesional basal ganglia with 9HPT performance—suggests that
the recovery is enhanced by reducing over-recruitment of the
contralateral extremity.

Overall these brain changes in subcortical structures (such as
basal ganglia) and cerebellum and its interaction with cortical
regions as well as the brain-behavioral correlations are consistent
with these brain structures’ involvements in movement related
functions (i.e., basal ganglia has been implicated in functions
including control of voluntary movements, procedural learning
and the cerebellum contributes to functions such as coordination,
precision, and timing of movements). However, given the small
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FIGURE 6 | Significant correlations between changes in regional centralities

and changes in behavioral measures. (A) Relationship between changes in BC

measure of right basal ganglia and individual changes in 9-HPT score.

(B) Relationship between changes in BC measure of left anterior inferior

cerebellum and individual changes in ARAT score. Red line representing the

slope of correlation between measurements. 9-HPT, Nine-Hole Peg Test;

ARAT, Action Research Arm Test; R, Right; L, Left. See Table 2 for the

abbreviations of the regions.

sample size and the fact that some of subjects were showing floor
effects, these correlational results must be considered exploratory
and interpreted carefully.

Limitations and Methodological
Considerations
This study had a limited sample size, given that we chose to
focus on a relatively homogenous group of stroke patients,
with all patients having right-sided lesions and being in a
chronic stage. We thus eliminated the confounding effect of
lesion hemispheres by choosing only right hemisphere patients.
However, the localization of the infarct in the sample size is still
heterogeneous within the right hemisphere. Therefore, results of
this study should be interpreted with cautious. Future studies

should be done with larger sample size and more homogenous
infarct.

The rsFCs within the motor regions were constructed using
the seed regions reported in the work ofWang et al. (2010), which
studied spontaneous recovery in stroke patients. A large number
of studies report slightly varying coordinates for the motor
network; however, given that the Wang et al. seed regions cover
crucial regions of the motor network, it was decided to construct
RSFC matrices using these regions. By focusing on a within-
groups analysis, effects of other confounding variables such as
age, gender, and stroke severity were mitigated. Also, attempts
to reduce false positives in results were made by applying the
FDR correction and reported only those results that survived the
corrected p-value. However, given the small sample size and the
rehabilitative focus of the study, we have also reported results
showing a trend toward significance, since these results, although
statistically not significant, may have practical implications.

The findings of this study showcase effective theoretical
approaches that may be further optimized in designing
neurofeedback devices and paradigms for stroke recovery. These
methods are also particularly useful when used to discern brain
activity patterns for training and conditioning purposes. A
review performed by Dimyan and Cohen (2011), determined
that increased ipsilesional lateralization may be more optimal
for motor recovery by its association with spontaneous recovery
(Dimyan and Cohen, 2011). The conclusions made by Dimyan
and Cohen (2011) are consistent with the possibility that is
a diversity in neuronal pattering/organization that facilitate
more effective recoveries following stroke. Furthermore, these
progressive patterns may be modulated with interventional
therapeutic technologies in ways that are not evicted by
spontaneous recovery.

CONCLUSIONS

This study provides a graph theoretical approach toward
investigating brain changes following BCI therapy in chronic
right hemisphere stroke patients with upper extremity motor
impairments. Results showed that improvement in ipsilesional
brain connectivity in the motor network can be observed
concurrently with a period of training using a BCI device,
and that these changes might be correlated with improved
in behavioral outcomes. Due to small sample size and
hetorogenous localization of the infarct in the sample size,
these results should be interpreted with cautious and further
studies will be needed with larger sample size to follow up
on these findings. This study sheds light on the underlying
mechanisms of recovery following BCI therapy, and may
contribute toward developing more patient-specific BCI
therapy protocols to facilitate recovery in chronic stroke
patients.
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